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ON THE SIMULTANEOUS OPTIMAL DESIGN
AND OPERATION OF BATCH
. DISTILLATION_ COLUMNS

I 5. LOGSDON, U. M. DIWEKAR and L. T. BIEGLER _
Deportiment of Chemical Engivisering, Carnegiz-Meilon Unfversity, Pittsturgh, US4

We explore 2 simultaneous ontimlsadan sirategy for the destgn and operation of bateh distlllailon wohomes. A mmber of
researchers have dexit with fhe optimnl apertion fe.g. optimal teflax palicy) of these systems, These stmfies are lrmited to
the optimisaden of colomn operations keeping the colunm deslpn fived . o .

By applyfng bigh arder Impliclt methods {eoch ma collocatlan on finfts elements], ane ob¢ains n stabde and highly wecarate

ad apersting palkies are optimised topethos,

An ebjecsize fanction is larmulated thas maxiesises the net pros,
for the hacch distilintion valf, The short-cor madel ([Direker,
correlations far ealamn deslgn is used to ellaw the pnnber of org

defited 2 the value of the prodact mimes e expltal costs
1388) bared npon Fermke's, GliNmd's, and Undermogds

¥d £ be 1 comtineors varisble, wifhin the nonllpear progran,

Heremﬂndﬂmlmlul'lwm:lmﬁun_rurmehhm-cntmd:lhulufnrﬂmpuunﬂur;imgnmtmm.

This approach i3 demorstated on & nomber of applications Inchnting

the design.and operndon of & colomn fot x single feed

mmpmllign‘qnd the nultipetiod peoblem For the disign of & single colomm 4o separaee different Foed charges Beat harve different

1. INTRODUCTION
Due to the increasing importanes of speciality chemicals,

the optimal design and operation of process equipment

for batch processes is of interest, especially for an
operation that uses expensive raw maferials. The
determinationi of an. optimal control policy for an
existing unit operation has been investigated over the
years for batch distiliation, However, the simultaneous
desipn and operation of the bateh columns for an
econamic objective function has received little attention
in the litcrature. Diwekar er.of (1389) investigated

- the design of the column for an economic abjective

function that considered capital costs. The optitnal

control profile was also found for the fixed column -

degign by Diwekar et al, (1987). in this paper, we explore
a strategy for the simultancous design and operation of
batch distiliation columns, We want to ensure that at the
prefiminary design stage, the column will be able to
accomplish - the desired separation for different
companents and .mixtures in an economic manner.so
that the operation is profitable, We. include in our profit
function the-capital costs for the.column and utility
¢oats, and balance these costs against the value of the
product, Once the ecolumn parameters have been
determined, then a rigorons model can be used 1o verify

‘the control profile optimization. Simultaneous design

and - operation js useful especially for multipurpose
columns, where- the optimal design s required to handle
more thar one operation.

A number of researchers have investigeted the optimal
operation of the column once the column design is

known, The classic cases considered are:

- 1. Maximum Distillatc Froblem—Maximise the amount

of distillate of a specified concentration for a specified
bateh time, * - o

2. Minimum Time Problem—Minimise the batch time

needed to produce a preseribed amount of distillate of
a specified concentration. .

3. Maximum Profit Probilem—Maximise a profit func-
tion for a specified concentration of distillate,

As mentioned above, Diwsker er ol (1989} investi-

' gated the design of the column for an economie objective

function - that considered capital ‘costs; in B previous
study they also solved the Maximum' Distillate Problemn
(Diwekar et af., 1987). Tn both studies a shortent ap-
proach using Fenske's, Gilliland’s and Underwood's
correlations was used for the modelling in order to maike
the number of platés a continueus variable. Mass and
energy balances were written in their differential form for
dynamic modelling. Pontryagin's maximum principie
was used to solve-the Maximum Distiliate Problem for
the short-cut model and the results. woere equivalent to
the plate to plate calenlations reported in the literature.
Columms handling binary and multicomponent systems
were optimised using this approach. '

Kerkhof and Vissers (1978) combined the Maximum
Distiliate Problem snd the Minimum Time Problem to
form a profit function in which they maximised the profit
on an hourly basis for a fxed desipm. The systems
studied were binary distiflation columns using a plate to
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. MATHEMATICAL MODEL

Here we are confronted either with a mixed inteper
nonlinear programming {MINLF) problem to determine
the sumber of trays riporously, or a carefolly chosen
model simplification so that & can be treated as a
continuous parameter. Viswanathan and Grossmann
(1990} used a MINLP approach for steady state colomn
design, but this can be potentially expensive for batch
columns with dynamics. Diwekar (1988) has shown the
effectiveness of using a short-cut model for preliminary
design purposes, We boefly review the short-cut formu-
lation and show how a mathematical programming
approach can be used to selve the optimal control
problem while simultaneously designing the column in
order lo achisve a maxitmmm - profit. The shoct-cut
methoeds are based on constant relative volatilities of the
cemponents. In addition, Fenske's equation, Under-
waods's equations, and Gilliland’s correlation are used
to determine the optimal values for the refiux ratio
profile and the number of trays for a specified purity
constraint to maximise the profit function. We rewrite
Fenske's equation in the form of Hengstebeck-Geddes™
equilibrium equation. The following problem formu-
lation results:

Maximise
Bie), N, V;
lJ!r_;!.'.u.v,—.!?ﬂt::,_.=rf. PUNE L VLRV @
T 4+ T, Hrs.
5.1,
Mass balances
ds [ : .
- —E-_—i_-i, & = overall masz = B, — D(1} (4}
dep _ VIxi=xd]
& - RATS xi = kecy component {5)
dxf _ Pixd—xi]
d_j‘ = m j = 2& vag M
—ne. of components ()]

Underwood’s Correlation

ﬂ=iml—x{‘; 'anrﬂ+l=i

4 X}

fet jm1 %R @
Gilliland’s Ceorrelation
14+ 544570(% 1
p=t— Mp[{ X }J ®
(M +117.2%) /X
{Rl N anin} [N - len}
Yo Thmm/ =Y _minl
w+n M YTy
Henpstebeck-Geddes® equilibrium equation
Ii,_[ﬁﬁ] IL’ Jlr_]:n‘“wn {g]
Summation equations
Tah=10 ¥ xf=10 (10)

i=l -1

Purity constraint
¥ oxi

Z T
X3 ever boved S X = 10— 1.0 (1
I

V
——
F A
where

R, = reflux ratio
x3 =composition of distillate (key component)
X} = compositions of disiillate (other than key)
xy =composition in reboiler {key component)
xi, = composition of reboiler {other than key)
&, = relative volatilities
¢ = Underwood’s roots
x§ = final average composition of product in distil-
late receiver. -
If constant melal overflow is not an adequate assump-

tion, then the differential enthalpy balances can be added
as required. Also, this short-cut medel can be modified

" to include the dynamic relations that describe the effect

of holdup in the condenter system for simulation por-
poses once the number of trays has been detcrmined.

The shortcut model itself only nceds the feed compo-
sition in otder to determine the column design for a
desired purity specification. For the simultanesus ap-
proach we find optimal values for B3, N, V and the
optimal hateh time, £ Thiz optimisation problem allows
us 1o make = simplification with regard to vapour boflup
rate. Vapour boilnp rate for operation F{r) is con-
strained by 2 maximum rate, V.., determined by the
column diameter. However, one can show with an
intuitive {(as well as a variational) arpument that.
Vit) =V, if the optimal operation is profitable and
{3) ia onr objective function, Consequently, boilup rate
can be described simply by the variable ¥ for this
problem. :

MNote that the overall mass balance gives a direct
relationship between the final batch time and the amount

-of distillate produced, For convenience, in our shorteut

model we assume V constant and have’
ds ¥V  —dD
dr T TR+1 dt
By introdecing a dimensionless time,

{12)

t
f=-
]

we normalise the final batch time between 0 and 1 to get:

F7 vodr
TRy T J.n R (NI
This expression can be substituted for £ in the objec-
tive function, if required. Note that the differential
equations are madified to include the final batch time, r;.
‘This greatty simplifies the formulation by allowing # to
become an additionz] parameter in the optimization.
Also, it can be shawn for this problem that the optimum
value for i lics at its upper bound if setup time T, is
bounded by a multiple of  (Appendix B). While this
assumption mAy not always be realistic, the upper bound
an ¥ is frequently dietated by exogenous considerations
such as maximum product demand or other equipment
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Problem {NLP1) can now be salved by any large scale
nonlinear programming solver. For this study we usod
the GAMS meodelling system to st up (MLPL) -and
obtained solutions with the RND/SQP stratepy of Yas-
antharajan and Biegler (1988). Il should be noted that
(NLP1) can also be simplified if none of the profile
inequality constraints are active, Here we take advantage
of Pontryaging’s maximum principle to yield a smaller
optimisation problem.

Application of Maximum Principle to NLPI

We first consider the Maximum Profit objective given |

by equation {1} and note that only D (amount of
distiliate) is directly influenced by &£;. Also for fixed A,
¥, and # we see that the Maximum Profit Problem
merely becomes the Maximum Distillate Problem and
the pucity constraint is.given by equation £103 o eguiv-
alently by:

Ko By — x4 (1115 (8y)
By — S(t)

For piven-values of &, V, and iy one ¢an now derive the
relations for optimal reflux policy through the wvari-
ationai conditions for the shortout moded {3). First, wz
form the Hemiltonian using differential equations {4}
and {5}:

=purty (19)

—V . Vixh—x}]
R0 IR+ 155
.. and the adjoint equations,
Al L ial-xd)

Jdt TR

ix)

o, (-5
dr = (R +1)S
with final conditions

E. i BeBlx () — xpea]
i+ I, (8~ SGF

M=l (20}
(21)

(22)

Alr) =

(23)

PASN :
L ()= 1=
)= e B ¢ 1)
Here u; is the Lagranpge multiplier for the purity con-
straint {19),

Now the two adjoints 1,, 4, can be combined into ane
variable given by i = A3{4y and the adjoini equations ean
be combinad to:

: . Ox) |
di_ - 'P'V(I _Ex_g,) AW —xD)

At T (R +1S (R + D5 25)
with '

Alte)= £y, Str), x16)] (26}
The optimaiity condition on the reflux policy leads o
- AH : _

:ETE =1 ) {20

which- iraplies .

§—Axf—ah

- Bx] B
7R,

Here fx}/dx) and dx} /3R, are derived from the short-cut

R = to T e

- madel. Wote that only the key component still compo-

sitions are expressed time explicitly. For the other Com-
ponenis timte implicit cquations are useful,

These constraints are added to the nonlinear program
so that the differential equality constraints to be sojved
are '

S =£(8, x}, xa, R

X, =ﬁ[3sigaxdtR1}

A=fS x4 xR -

R =1u(8, x}, 4, x) (29}

We now apply orthogonal collocation to these equations
and note that initial conditions for x| and § can be
determined in the same way ag with {NLP1). The final
condition for 1 is determined by adjusting g undl the
purity constraint is met. We note that instead of apecify-
ing pte we simply leave the final condition for 4 as a degres
of freedom that is determined by direct enforcement of
the purity constraint in the problem. The resulting NLP
formulation now becomes:

Max F
. M! V-!"f

St § =S %l xiR). .
i =508, xl, %, R)
A=f(S,x, 4, %, R
R=£08 x4, x)

| !'HR :l+ 1 dr . | .'
" LT _ . . :
= = specificatio
x3 D purity specification

Discretizing the ODE's in this formulation leads ta a
set of nonlinear algebraic equations along with the
nonlinear algebraic short-cot model to be solved simul-
tanzously. In the resulting formulation the degrees of
freedom are the desipn varigbies themsalves and the
contro] variables are determined entirely by the equality
constraints. This leads to savings in compautational time
and memory, This formulation can also be extended to
dea] with overhead condenger heldup effects (equation
MSM piven below) by changing the modified short-cut
maodel for simulation. Note the state veriables, adjoints
and the Hamiltonian remain the same and only the
simulation model changes. In general, extensions can
also be made to more complex models by increasing the
problem size,

This formulation is vafid i ne mmequality constraints
on the control or state préfiles become active, althaugh
it can easily incorporate inequality constraints on design
parameters or variables evaluated at final time. Given
these two approaches, we comsider examples in the next
section to demonstrate the use of solving the Maximurm
Profit Problem to simultaneousty design and determine

(NLP2)
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‘simulate. the plate to plate model and the purity actually

arrived at was 95.5%. The amount of distiilate collecteq
was 1362 moles, The GAMS (Braoke et af, 198%)
modelling system was used for all of the models with
arthogonal collocation used to discretize the differential
cquations,

Then the reflux policy was allowed to vary with Hme
in order to find the aptimal control policy fotr the
Maximum Distillate Problem. The short-cut and
modified short-cut models were used for the optimis-
ation. Figure 2 compares the refiux policies and Figure
3 compares the key component purity profile.

Note that the profiles match each other closely over
most of the time period. The effoct of haldup is shown
at the beginning and at the end of the profiles with the
sharp changes in the modified holdup policies. We used
the optimal control profile from the modified short-cut
case (MSM) and simulated column performance with a

Plate to piate model. Once apgain we arrived st a fing)

putity of 95.5%. Also, by allowing the reflux ratio to
vary with time, we increased the amount of distillate
“{objective function) to 7.419 moles using the modified
short-cut model. Because the no holdup short-cut model
requires & higher reflux ratio for the purity specification
at the beginning and end of the batch time than the
medified holdup. model, the amount of distillate
recovered decreases to 7.259 moles. This can also be seen

from equation {NT). :

One sees that even though the plate to plate and
short-cut models de not agree exactly because of the
- holdup effect, the average composition at final time
agrees within 0.5%. Also for this case, the short—cut policy
cauges the rigofous overhead composition 1o be greater
than the specification required and thus, 1he policy can
be used for more complex-madels. We conclude that the
short-cut- model reflux policy can yield an overhead
purity compesition that will be comparable to plate 1o
- plate ealkulations for columns with a reasonable number
" of ‘trays; nearly ideal. separations, and fast column
dynamics. This was also observed by Diwekar {1988).

Profit Function Maximisation

The next exarriple we consider is found in Kerkhol and
Vissers (1978} {case 13). The details of the problem are

ac

T

4] T T T T T ¥ T T 1
0.0 0.2 0.4 0.8 0.8 1.4

" Tima { kotrs )

Fipure 2. Comparisen of reflux policies for modifed holdup model
versus no haldup model for muliicompanent oxAmpie.

20 i '
L - :
E M |
b 10 - ' 8- Wih Haldup ¥
_ : ~~ Mo Heidup

.=

2

o=

[}

& oss:

‘E 0.54

E o

z £.83 4 # With Hoklup

T 1 == No Heddup
0,92+ T
081 =
0.0 - 0.2 0.4 0.6 0.8 1.0

Time { hours )

Figure 3. Distillate composition profiles for modifed holdup nrede|
versus 6 holdup model for multicompetient EXARI]e,

N =20 trays, & = 2.0, setup time T, = one hour, over-
head purity constraint = 0,98, feed ‘composition = 3,5,
ratio of sales price to cost is 41 to 10, and energy costs,
depfecistion, cic =150, ¥ =120 molesth, and initial
charge = 100 moles. They .solve the. maximum profit
Function problem using a no holdup model, which uses
quasi-stationary plate to plate calculations for the deter-
mination of the overhead composition, Here the profit
Function is L

g = PP BC
B i‘J"i'Tr

where Cyia the cost for energy; depreciation, wapes, ele,

Although our cost function considers the capital cost
of the batch distillation systern given above, we also
solved this problem using equation {30) with (ke short-
cut model (3) and the formulation of NLP1. The results
are shown in Figups 4, - o

This profile compares wel! with. the result reperted by
Eerkhof and Vissers. Their reffux ratio starts at about §
and ends at slightly ever 21 which compares well with
Figure 4. Their optimum batch this Gime i3 slightly

¢ : e

- smaller 2t 3.35h compared to our time of 3.63 h. This

results in their profit being slightly higher because the
product value. is. divided by the :total batch time,
Although neither. model is rigorous because of the no
holdop assumption, the models are useful for the
preliminary design slage cost comparisons,

a0

Reftux Aeflo

'Tl.ma {houra )

Figure 4. Optimal reflux policy for maximum profid function a3 defined
b KerkBol and Vissers.
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separution work, i.e. trayz andjor higher reflux ratio).
The difference in the profit is accounted for by the smallor
batch tirme. Again, thess results are onfy valid for the cast
parameters and objective Minetion vsed in this example.

Clearly, the inequality constraint affects the final
design and control profile. The coltocation formulation
{(NLP1) allows for this constraint to be handled eastly
withity the noglinear program. We have shown that the
desigt and determination of the oplimal control profile
can be solved for a single separation. In the next
problem, we note that batch units are used for systems
having different components and different feed compo-
sttions. The design of a single column and determination
of the control profiles for sach operation therefore needs
to be considered. :

: Multiperiod Optimisation

Consider now the muliiperiod probiem for baich
distilation umits. Thiz sHows evaluation of a single
¢olumn design for different feed compositions and ser-

vices. Here we need to choose the optimai design par-

ameters for a variety of operations and deterrmine an
optimal profile for each operation. As a small example
consider the design of the column for twe binary mix-
tures with an initial feed charge of 116 moles {cach
rmixture) to be distilled to 95% purity. For this problem,
we simplified the problem lormddation by asseming
instantaneons switching between the batches, Therefore,
we ignored transients and downtime for the switching of
the feeds. The objective function that we used was to
maximise the stm of the individual profits '

= Dy P — By ;G _ T.AC.
’ L Hrs.

for each of the periods, f. Other problem details are given
in Table 3. .

We initialize the gohetion by fizing the number of trays
at 15 and solving the maximum profit function for each
of the separations as shown in Figure 8.

‘Figure 8 elearly shows that the twe mixtures require
different reflix policies-and the separations have differ-
ent batch times. Note that the second period requires a
higher reflux policy at the end because the aptimal

- control policy tries to recover 23 much of the more

expensive product as possible in a short amount of tirme,
Starting from this initial design the number of trays in
the multiperiad optimisation problem was allowed to
vary from 5 to 20 and the maximum profit problem was
resolved, For this multiperiod problem, the number of
trays went to the upper bound of 20 and Figure 9 shows
the solution.

Comparing thiz fo the initial solutien of 15 trays
{Figures 10 and 11}, we see that the reflux policy is
reduced and that the batch time is also reduced. Table
6 summarizes the results.

Tabfz 5 Inpur candilions—exoraple 2.
Fezd composition- - Relative Boilup Rate  Cost

‘Case  key component Volatility mologthr Ratia®
I 075 L5 750 115/75.8
2 .50 2.0 240 115/535.1

' *Product/raw matarials.

=== Parlod 1
S0 4 Parod?

Ruflux Hallo

3

_ Time { hours }
Figure B, Optimal reflux policies for mulliperiod cxample with ¥ = 15,

&0
= Poriod 1
04 * Pqnnd z
£ a0-
E -
%- 20 -
E -
10 -
0 T
4] 1 2
. o ‘I_'l'hu{huura_j'
. Firure 3, Optimal reflux pafices for ‘aptimal design (W = 200,
B s ] X . -
-+ Pafiod1 w15
-~ Paricd 1 M =20
E . zn =
]
T
£
- 10
0 - T T e T T
L - 1 - 2 3

. . 'Tlmuur;l,’ houra }

Figure [0, Comparison of eptinial reflux palices for Bevind 1 showing
the cifect of number af trays on reflux policies. .-

For this simple case, the increase in profit is Iargely
influenced by the decrease iri the baich time. The differ-
ence in the amount of distillate recovered is slight. Note
that the number of trays went to the upper bound for
both of the periods, One could in principle, solve a larger
number of separations by imposing a reasonable upper
bound on the trays and decompising the problem into
finding the optimal reflux policy for each fixed column
design. If the upper bound on the trays and boilup rate
is active for each of the individual separations, then the
multiperiod problem can be solved separately for cach
pericd. However, if the upper bounds are not active for
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Baze Case

10 tray column
¥ =toilup rate = 110 moles/h

From Guthrie's Correlations wsing Carbon Steal and
Hydrocarbons as Feed Stock

Column Cost = F100,000
Reboiler, Condenger, and Kettle Cost = $200,000
Utilities == 320,000
Then

Ky 08 NO2 = £100,000
K 110% 10™ = 3100,000
K== 1500

£5 V05 = §200,000

K w2 0500

KV = 320,000
Ky == 180

APPENDIX B
Assume T is proportional {o £, T, = kt;, {NLP1) can
be written as
DP,— B,C,
ir+ Ts

Kl VMNH'E'F Kz I}ﬂ.lﬁ + Ka V
Hrs,

st 2=Vf{zy)
2(2,¥) 50
Az, ¥)=0
From (NT) we have =DV and by defining a
normaiized time T = ¥F we rewrite (GNLP) equivaiently
as:

(GNLP) Max =

Max i
_DP-BRG  KVUNTL B VSR Y
T D{VRyy+ T, Hrs.
dr
st g=fy
gz y}=0
Az, y)=10
RI'.'RTI'_ o= ﬂ

With this formulation V" appears only in the objective
fuactien. This fonction can wow be Written T & Totes
general larm:

[r)
¢=b;V[I+k]

whete o, b, ¢, d, e =0 and o, ff are below zero and one.
Naw

v @
dF B[l +k]

and if we assume profitable eperaton, =0, and
substitute for this inequality we have

— [V + adV? +eV]

—[eeb—t 4 dBF 4 2]

%2[c(1—m}l’“"+d{l —ByFf-i=0
Thus the optimum value of ¥ must be at its upper bound.

APPENDIX C

At o solution of (WLP1) with & fixed as a fixed
parameler we can write the sensitivity of ¥ with respect
to N as:

d¥ P, dD PD-CyB di 08K P
d¥ g+ T,d¥N [+ T,F d¥ N2
Here dD/d¥ = 0 and defdN <O becanse with an opti-
mal reflux policy batch time can be reduced and b can
be increased with increasing &, Thus a stationary point

for N is oniy due to the third (capital cost) tern.
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