Unified Approach to Solving Optimal Design-

Control Problems in Batch Distillation

Urmila M. Diwekar

This article presents a unified approach 1o simultaneous sofution of optimizartion
and aptisad control problens in batch distillation, operating under different modes
of operation: variable, constant, or aptimal reflux, The simplified, computationaily
efficient short-cut method and a novel algorithm to sofve the optimal control prob-
lems in batch distillation is the basis of this unified approach. The short-cut method
identifies the feasible reglon of aperation essentiol for optimization and optimel
control problems, and provides enalytical partiol derivatives of the model parameters
crucial to the solution,

The new slgorithm for the sofution of optimal control problems Is ¢ combination
of the maximum principle and NLP optimization techniques. It circumuvents the
problems associated with the meximum principle approach {fterative solution of a
two-point boundary value probiem, unbounded control variables, and inability to
handie the simultaneous oplimization and optimal control probien:y, and the coupled
ODE discretization-NLP aptimization sclieme for nonfinear models (higher system
noniinearities, multiplicity of solutions, sensitivity af convergence o initiol guesses).
This algorithm reduces the dimensionality of the problem, and rhe nature of the
algorithm alfows @ conumon platform to optimal solutions of different operating
conditions, This article olso shows that different cotepories of the oprimal control
problems in batch distiliation essentially involve the solution of the maxirmurs dis-
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tiflate problem.

Introduction

The two well-known methods of operating batch columns
are variable reflux and constant product composition of the
key component, and constant reflux and variable product com-
position. The opiimal eontrol policy is essentially a trade-off
between the two methods and i3 based on the availability o
vield most profitable aperation. Literature on optimization of
batch column is focused mostly on the solution of optimal
contral problams, which includes optimizing the indices of
petformance like maximom distillate, minimum time, and
maximum profit. Design optimization of batch columns for
constant and variable refiux policies for single and multifeae-
tion aperation is considered in our earlier work (Diwekar et
al., 1989). This work is besed oo the simplified, computa-
tiomadly efficient short-cut method proposed by Diwekar and
Madhavan (Diwekar, 198%; Diwekar and Madhavan, [981).
Recently, Logsdon et al. (1590} have also selved the problem
of simulianzons optimization of design and operation of hatch
columns using the short-cut method, callocation approach,
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and nonlinear propramming {NLP) techniquas, with the op-
timal contrel policy problem embedded in the overall problem.

Although optimal control policy falls between the two con-
venitional policies, each optimal contral problem with different
obijective Functlions is trestéd separately in the literature, This
i because of the complexity of the problem formulation and
iarge computational efforts assoclated with the selution of the
optimal control problem. The commonly used methods for
rolving optimal control problems include Pontryagin’s soad-
mum priociple and dynamic programming, and wse of nen-
linear programming alporithms with OD¥E discretization by
collocation. For continucus optimization problems the max-
jmum principle is preferable to dynamic programming, recatse
the application of dynamic programming leads to a st of
partial differential equations. The maximum principle neces-
sitates repeated pumerical salutions of two-peint boundary
value problems, thereby making it computationatly expensive,
Furthermaore, it cannot hartdle boimds on the control variables
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Figure 1. Solulion using the maximum principle,

gLy S8 =<0()
gLy sE=p(L)

where J is the objective function given by Eg. 1, % is the state
vectar (e ) dimensional)at any tinte 7, §risthe cantrol vector,
and & is the vector of the scalar variables. Equations 3 and 4
represent the equality {my; constraints) and ipeqoality con-
straints (#1 constraints including the bounds on the state vari-
ahles), respectively {total m constraints). 8{L) and z(L)
represent the lower bounds on the control variables d; end the
scalar wariable p, vespectively, and 8(Uf), 7 {L7) are the upper
bounds for the same.

[n the abgence of the scalar variable vector g, the DACE is
equivalent to the optimal control problem. The mest popular
methad For solving the aptiroal control problem is Pontryagin's
maximum principle method. Recent advances in NLP opti-
mization techrigues have provided the researchers with 2 new
iool, Diseretization of ODEs to algebraic equations, followed
by NLP optimization problem, seems to be the orrent trend
in the optimization liceratire, '

in the following subsections, these two approaches for the
soiution of the above DAOP are compared. A new algorithin,
which tries to overcome the drawbacks of the maximum prin-
tiple and the ODE discretization followed by NLP optimi-

zation, is presented for the solution of optimal control problems
in batch distillation. Optimal contrel problems in bateh dis-
tillation for varlous cacepories of objective functions are also
analyaed,

Maxintian Principle

The maximam principle was proposed first by Pontryagin
and cowarkers (Boltyanski et al., 195§; Pontryagin, 1956,
1957). Since then, it has been widely used 10 selve a variety
of optimal control groblems. Unfortunately the maximum
principle can be used to solve the optimal control preblem far
a fixed scalar variable vector () only, not the complete DAGP
described in the previous section. Figure [ shows the solution
1o the DAOP for a fixed J based on the formulation given
below.

T LT3
Clptémir,e I =j[fr+ S E{X,, 8y ,‘;}d.:] =TT Ey= z‘-}x‘r 5
1]

i i

subject to
B 10 00 ®
A (Fyy b D=0 )
(R B, W)=0 ®
Fy=Fotan
ALy =<0, = 8L

The righthand sids of Eq. 5 represents the Hrezr objecting
function in terms of the finai values of ¥ and values of &, where
€ represents the vector of constants. Using the Lagrangian
formulation for the above problem and remeving the bounds
4(L) and #{{/) on the control vatiable vector &, smee the
maximum principle cannot easily handle the bounds on the
contral variable (Cuthrell and Biepler, 1987; Akpiray and Hey-
dewsiller, 12530), one obtains:

Optjmize P —ETwr 4 T, 0 D+ M (215, 6, 9] - ()

I

subject 1o
X,
“&?r=f T O E) (10}
Xo=Xintilal
wherne
W=, Ml

Application of the maximuta principle to the abovea problen
involves addition of nx adjoint varizhles z, (one adjoint variable
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of the problem does not aflow bounds on the variables. On
the other hand, the orthoponal collocaton discretization and
NLF optimization method can salve the overal]l eptimization
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Flgure 3. Batch distillation column.
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problem but involves solution af higher dimensional system
of equations.

A new approach Lo optimal control problems in batch dis-
tillation prapased here combines the maximum principle and
MLF techniques. The number of adjoint variables is reduced
by intraducing quasi-steady-state approxzimations (for exan-
ple, the Ume implicht differential materizal balance in Table 1)
to some of the state variables, thereby reducing the numbar
of adjoint equations. IF the number of cquality constrajnts
(other than the system model) and the number of reduced
adjoint variables are equal, as in the case of batch distillation,
where one adjoint varigble z and one equality constraint are
specified in terms of product purity (Bq. 29), then neither the
Lagrangian formulation of the objective fungicn (Eq. %) nar
the final boundary conditdons of the adjoint varinbles F=5)
are nsad in the selution. Instead, the final bouodary conditions
of the adjoint variables are antomatienlly imposed when the
equality constraints are satisfied. Minimizing the Hamiltonian
provides the functional correlation for the cantrol vectars {Eq.
23). In short, the new algorithm involves solution of the NLP
optimization problem for the scalar variables x sultject to the
criginal model for the state variables, the adjoint equations
(Eq. 22), carrelation for the control variables (Eq. 23), and
constraints that implicitly relate to the initial valpas of the
adjoint varfables (Eq. 24}, This algerithm reduces the dimen-
siomality of the problem and avoids the solution of two-point
boundary value problem. The following sections show thit far
the batch distillation problern bounds could be imposed on the
coatrol vector by virtue of the nature of the formulation.

The formulation of the DAOP using the new alporithm
reselis io:

T
GFDL!niIeJ=I[Tr+ | ve. . ma*r] 20)
H ]
subject o
%
E—f{xn 0 i) {21}
~m (%, b0, ) _ (22
8=H"{Zn %} (23)
§n=ﬁ*{ﬁffn &, ) [24]
g%y by 30 (25)
X = Xniiinl
LY =E=E()
QIL) 56, =e(Lh

Muxinuen diseillare problem in barch diseliotion

For the systern in Figure 3, which assumes a constant boilup
rate and no holdup conditions, an owveral] dif f=rantial material
balanes equation over dme of can be given =57
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wlere c,, €3, and ¢; are the cost coefficlents and G, is allowahle
vapor velacity, and Gy, vapot handling capacity af the equip-
mant.

The objective function may be expressed a5 a maximum
distillate problem a2 shown below:

M{SGS}(MW'I&“D)P,
&y
T+1,

_OFN eV UE6lT o
T+,

» Maximization of Profit (Logsdon et al., 1990):
DP.-BCo K VNI -RV* - KV

aximize J=
G 2 A HRs

(54)

where Ky, K3, and K represent the cost cocfficients and H Rz
represents the hours per year. Converting the problem for
application of the new algorithm;

(Maﬂ_ml?_ D) P BeCy
R,
Megigze T+t
E VNS Y
HRs (35)
Overall zolution

The solution procadure using the algorithm proposed in this
work is shown in Figures 4 and 5. Thedwo levels of optimization
are: the NLP optimization at the outer loop with repect to
_ the scalar variables g, and fnitial value of R,{=Ra} and the
inner Ioop involving calculation of the abjective function and
the purity censtraint for fixed values of the scalar variables
ond Ry [Ry is nsed as the decislon variable instead of 2, as
proposed in the new algorithm (Eq. 24), because with this
formulatian it is easter to put boonds on R

Cliven the scalar variables {for example, N and ¥), and the
value of Ry, the inner loop mitlalizes the two state variahlas,
and the short-cut method equations allaw For the caleulation
of the other state varizbles and model parameters (such as still
and distillate composition). The initial value of the adjoint
varizble is then caleulated from the implicit correlation (Ea.
15), thus defining the relatlonship betwesn the control variable
(R,} with rezpect to the edjoint variable (£} and other madel
variahles. The adjoint equation and state equations are fute-
grated for the next thme step and the new B it caloulated, The
integration and calcutatlon of the control variable &, continue
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_Figure 4. Combining maximum principle and NLP op-

timization technigques.

till the spacified siopping criterion is met. This stopping cri-
terion in Figure 5 depends on the problem st hand. For max-
imum profit and maximum distiilate problems, the final batch
time is used a9 the stopping criterian and for minimum tSme
problem it is the final amount remaining in the still which
marks the end of operaticn. The values of the objective func-
tion and the constraint are calculated at this stage and the
control is transferred to the MLP problem, which then com-
putes the new set 'of scalar variables & and Ry.

Since the variable Ry is independent of the optimal control
probtem and it has been observed that the following constraint
on Ry is atways valid {Converse and Gross, 1963 Keith and
Brunet, 1971: Murty et al., 1980; Diwekar et al., 1987; Logsdon

Sergrue the Sor; Virlebley
ER
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Figure 5. Unlfied shorl-cut modet tor NLP optimization.
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Tahte 2. A Unified Approach Using the Sheri-Cot Method
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et al., 1990; Coward, 1967a; Robinson, 1969; Mayur and Jack-
son, 1971; Eply et al., 1979; Hansen and Jorgemsen, 1984;
Eerkhof and Vissers, 1978},

Ry R, {36
the lawer bound [R { £)] may be impased on the controf profile
ag a lower bound to the decision variable Ry in the NLP ap-
timization. Tn €act, i will be shown in the next section that
the variable Ry Was an inherent lower bound defined by the
purity constraint.

‘The optimal contrel profile evaluations stop at the gtapning
criterion. Alternatively, the upper bound to R, {=R(L7)] can
be osed a3 the intermediate stopping criterion for the eptimal
control problem and the intsgration of state variable equations
confinue 25 in the constant reffux case, ‘with the reflux mtio
equal o the upper bound, till the real stopping criterin is
encountered.

S0, Bgs. 35 and 49 can he written as:
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-1 for Ry=R(L)}

Re= ﬂ.\‘.ﬂ'

R=R{) for RO>R{D)

(37}

This squation allows one to impase the upper bound on the
coutrol profile locally. The successful validation of thisstratezy
is chown in the section on Results and Discussions.

tnified Ap!:ruach to tha Qptimizatlon Problems in
Batch Distliation

The short-cut method for batch distillation proposed by
Diwckar and Madhavan (1991) is based on the assumption that
the batch distillaion eclemn cun be considered as a continnous
distillation column ‘with changing feed at any time instant.
This approximation enzbled the uss of continuous diatil{ation
theory 1o batch distillation with some madifications. Thiz mode!
has an 2lgsbraic-equation-oriented form, and the different ap-
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Flgure 6. Solution far different DAOPs In batch distillation.

procedure involved iterations on h and the complete reflux
profile R, while the new algorithm invzlved solution of non-
linear alpehraic equafions with a single fterative variable Ry,
Although the CPL time required depends on the initial values
of » and R, for the two-point boundary valoe soaximurm prin-
ciple, on an average the new algorithm was found 1o be about
20 times faster than the two-paint boundary valee formulation
for the example shown in Figure 6a.

The time optimal problem shown in Figure §b was solved
uging the Fibonacel scarch techrique and the plats-to-plate
madal. The new algorithm weed the same maximuem distillats
problem o solve this time optimal problem and involved so-
lrtton of alpebrate equations resulting From the shortcut model,

The gimultanecus optimal design and operation problem
from Logsdon et al, (9% was solved using the collocation
discretization and NLP opfimization. Lagsdon et al. (1550)
bave also used the short-cut model for bateh distiliation to
solve this problem. The number of variables used as decision
varizbles in their formulation includes the 12 diseretized state
variables (associated with each xy), 12 decision variables for
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the control vector 4, the number of plates fone variabls), and
the harch time (one decision variable), In comparison, new
algorithm involves only fwo decision variables (Wand 2y). (In
the short-cut method, the number of plates N 1s not an integear
varjable but a real number representing theoretical nomber of
plates.} Also, the new algorithm is found to be at least 6 limes
faster than the collocation discretizatlon and NLF optimization
approach. Dimensionality of the problem reduces considerably
with the use of the new algorthm and resulis in great savings
in computational thme.

Conclusions

This anticie presented a povel approach for the solution of
optimal destgn-control protlems in batch distillation. The
commonly employed techniques for solution of thess problems
have a number of shorteomings, This new approach is & com-
bination of the maximum prindple and NLF optimization,
and was shown to circomvent the problems encountercd by
the two techniques and raduced the dimensionality of the prob-
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