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Recently, A new approach to awtomate the gqualitative analysis of dynamic
systems has cmerped in the AT literature. This approach has boen suceessful in
automatically constructing the phase partraits of explicitly ‘specified second-
order nonlinear dynamie systems, vsing the mathematies of nonlinear dyniamics.
In this paper. we exiend the capability of the existing technigues 1n implicitly
defined equations and apply it to the batch distillation of ternary areaLropic
aystems,

Rigotous models for the batch distillation of azeotropic systems are

computalionally complex, and the detivation of propertios such as feastble-

regians of operation does not seem possible, In this paper, we develop efstreci
windels (shart-cud modefs) for ternary azsolropic batch distillation based ‘on

simplifying assumptions to rigarons models. . These abstract modeis: are -

computationally sitipler to apalyze without. compromising fidality and would
allow the detivation of a feasible region of operation, A knowledpe of
distilfation boundaries and azeotrapic points 15 essential for (he proposed process
of abstraction. The derfvation of the distilation bouddaries requires a
qualitative analysia of ordimary differential equations degeribing the simple
distillation operation. '
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1 INTRODUCTION

Most previous work on qualitative reasoning literature
in AT"? has attempted to identify the qualitative proper-
ties of & dynamic system by performing a ‘gualitative
sitmulation’. Here, the term “gualitative’ is used to mean
that the stnte varfables (of a given set of diffcrental
equations} are represented by intervals such as (4, 0, =)
and the functismal relations are also converted to
Monotonie relations (‘confluences). The dynamic
gystem fs simulated by letting the system evelve for a
given sot of interval initia) values. Given te ambiguons
nature of interval arithmetic, even for simple cases these
simulations are plagued with multiple results, some of
which are often physically infleasible. As a result, the use
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af these methods for. enginsering analysis has heen
severely limited. .

Becently, in & position paper, Sacks and Doyle? have
autlined the shortcomings of 1he ‘qualitative simnlation”
approach and have suggested: the use of the mathe-
matical theory of nonlinesr dynemics to automate the
qualitative analysis of dynamic systems. Some initial
wotk along this direction hes been reported in the
literature,* " which has demonstrated the ahility to
automate the qualitative analysis of second-order
nontimear autonomous differential equations. Although
different programs differ in their ability to solve diffecent
classes of prablems, they all vonetheless are able to
construct automatically the phase partrait of highly
nonlinear second-ovder systems. This direction of
research provides the promise of wseful applications of
qualitative reasening in engineering analysis and design.
In this paper, we report the first such application where
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the qualitative anaiysis of the simple distillation process
for azeotropic systems is used to derive an abstract
mode] which is computationally simpler to analyze.

Rigorous models for the barch distillation of azestropic
systems arc computaliomally complex as they involve
salving for a large number of stifl differential equations.
Moreaver, the derivation of a Feasible region of operation
using Tigorous models docs not seem possible. One
approach for dealing with this computational complexity
is to develop simplified maodcls which are absiractions of
rigerous models. The abstraction process is a lrade-off
between somplicity and fidelity. The wsefulness of
abstracted models depends on the ease with which they
can be analyzed lor globa behavior, without comprising
fidelity. It is precisely with these considevations that ene
of the authors of this paper has developed an abstract
raode]l For the analysis of binary azeotropic distillation
columns. The abstract models ¥ for bingry Rzeolropic
batch distillation can be analyzed abour 200 to 30 times
faster than rigorous models without sacrificing accuracy.
In this paper, we extend Ihe process of abstraction to
ternary azeotropic batch distilistion. The gqualirative
analysis of differentig! equations is critical to this process
of abstracting simple models from rigorous medels of
ternary azeotropic batch distiflation and forms the
primary loous of this paper.

In Section 2 we describe an Al based propram, which
automatically consiructs the residue curve maps for
ternary azeotropte syatems. To illustrate this, we present
the ecthanol-water—cyclohexane ternary azeotropic
system and its residue curve map derived by our
program. Scction 3 describes 2 process for abstracting
simplified meodels for azeotropic batch distillation
systems. This abstraction procoss is applied lo the
acctone—isopropanol—water o iltustrale three points:

l. The peed for consiructing the residae carve map
for simple distillation and jts us in the
abstraction process.

2. The high accuracy of the abstract model in
comparison to rigerous models,

3. The substantial savings in the computationat
effert by using the abstract modet,

Finally, in Secticn 4 we discuss the impact ol this work
for the preliminary analysis and optitization of ternary
azeotropic batch distillation eolumns.

2 AUTOMATIC ANALYSIS OF ORDINARY
DIFFERENTIAL EQUATIONS

Qualitative reasoning with dynamic systems involves
drawing a phase portrait, that is, partitioning the phasc

1For asons of consistency with the Titerature perfzining to
this subject, we have nscd the terms absiract medels and short-
ctr meiheds as Synonyme in this paper.

plane in which the behavior of the system is essentially
similar, This requires identifying special sohiions sach
as equilibrium potmis, limit cyeles and separairices. The
gualitative theory of differemtial equations does not
provide systematic methods to identify these solutiona
by purely analytic means. Symbolic reasening must be
supplemented with numeric simulation of behavior, with
imitial vafues judiciously chosen based on  partial
analysis, One of the authors of this paper has becn
involvad in developing a pro gram"““ which intcgrates the .
use of symbelic and numeric computational methods to
consiruct eufomaticaly the phase portrait of a dynamic
system. Symbolic methods are used to search for
equilibrium points, separatrices and limit eycles, using
hestistics based on the undetlying mathematical thesry.
These results are then used to guide numerical
gimulation to identify the remmining featurss of the
phase portrait.

2.1 Qualitative analysis of planar differential equadons

In this subsection we provide a brief introduction to the
qualitalive analysis of differential equations. We resirict
our discussion to planar systems described by

d i}
ST =Plup) 5 = Q) (1)

We assume thst P and Q are nonlincar and satisfy
conditions puaranteeing the existence and uniqueness of
the solution for given initinl values. Moreover, we
assume that Hme does not appear explicitly in P and ¢
and hence the system is termed auionomons. The reader
is referred to Coddinguon® for a detailed discnssion of
the theory of ordinary differential equations, and to
Andronov e &% for a detailed discussion of the
qualitative theory of second order differential equations.

Any state (x, y) is represented by a point in the phase
plane, which reproscnts the set of sl possible stales of
the system. The state variebles x and y are functions of
tme +: x = fT#), =gt} As { vories, the slate [x, )
maves along a path, which is alse called a trafecrory. A
complete path represents the history of the system
throughout all times. The totafity of ail paths represents
all possible histores and it iz called the phase porfrait,
Oine and onfy one path passcs ithrough each point in the
phase plane for sutonomous syatems. So the precise
knowledge of any single point on the path determines
the entire paih For the system.

Qualiiative investigation ¢ntails the construction of &
phase portrait which describes the partitioning of the
phase plane into regions in which the behavior of the
system is qualitatively similar. Three kinds of infor-
mation are critical for the construction of the phase
portrait. First. we need to identify the point trajectories
or the equifibrium poinrs of the system and the locat
behavior of the system around these points, The local
tehavier is derived by computing the cigenvalues and



Application of ovdinary differential equations to azeatropic batch distifiarion 25

cigenvectors of the Jacobian of the system around the
equilibrium points Second, we need to identify the
existence or the nonexistenes of closed paths called fimir
cycles, which are periodic solutions of the sysiem.
Lastly, we nead to identify the global behavior of the
trajectiries that pass through equilibrium points. Such
paths are called separafrices. For 2 mare complete
discussion, the reader is referred to a tecent paper by
Kalagnanam et of.b

1.2 Residue cucve maps for azeotropic systems

Now we turn our attention to the tharmodynamics of
azeotropic distillation proceszes described by using
differential equations. Doherty and cownrkers' ™"
bhave shown the correspondence between the mathe-
matical properties on the differential equations deserib-
ing the simple distillationn residne curve map and
thermodynamic properties for azeotropic distillation.

A residue ourve map for the simple distiltation
oparation graphs the liguid composition paths which
are sohutions to the following set of ordinary differential
equations:'?

dx; :
'a?zxf—yl' JI=.|12.-"".-n"']- {2}

where n is the number of components in the systems (i.e.
for a ternary aysiem o = 3), the independent variable ¢ {s
a menotonically incrensing quantity related 1o real time,
and

Ozxsl, 0551
¥, the vapor composition, is related to x;, the liquid
composition, by the following vapor—ligoid equilibrivm
{¥LE) relationship:
xur .
= —— =
Ll P

where the lguid ponideality in terms of the activity
cocfficients + can be caloplated using the Wilson
equation given below:

R
In=—1In (ijﬁu)
I=I1

L]

.J.‘;_.f‘uﬁ

+ 1= _— f=1,2...%
gzj’:lxjﬁ“

L,2,...,m

and the Antoine vapor pressute equation:
7 B,
log=— = 4, —
¢ I S Lo

The emperature T (in degress Kelvind in the above
equations is calenlated vsing

P=1,2,...0

z":-"-’:".-‘rpf =

=1 P

and A;, B, and C; are constants associated with the fth
compeonent jn the ternary system and A (3 the
interaction parameter hetween compenent f and come
ponent § given by

{Ags = i)
RT

where F; is the molar volume of pure liquid component
{, and A, is the interaction energy between component
a_pd _J Fis the gas constant. The vector cocfcients .3'.. E,
<, FL A depend on the specific system under considera-
tion. The nctual wvalues of he coefficients for the
acotone-igopropanol-water and the cthanol-water—
cyclobexane system are provided in Tables 1 and 2,
Notice that the relation between x, and p, is given by an
implicit telation which involves temperature T. A
residue curve map is a phasc portrait of the system in
the composition space. The azeotropes coricspond to
the equilibrinm points of the sysiem, and the sepata-
trices along with the boundaries of the phase portrait
form the distillation boundaries.

The topslopical strueture of the residuz map is
severely constrained by the thermodynamics of azeo-
tropic distillation. Since x; i3 the liquid composition,
Ty =1 and the residue curve map is defined on a
simplex. The vertices correspond to pure component
compaositions, and the equilibrium points are binary and
ternary azeotropes. For # = 3 the residue curve map is
defined on a right-angled triangle. The temperature
surface i3 a naturally accurring Lyapunoy function for
the above differential equationa. The mavement of the
liquid composition x, is always in a direction which
makes the temperature increase. The ternperatire
function can be used to show that the abave differantial
equations do rot possess limit cycles. This constraint is
extremely useful in construciing the residue map sinee it
eliminales the computationally intenaive search for the
existence or nonexistence of limit cycles. Moteover, it
has alss been shawn that the equilibrium points of this
systerl are jsolated and are either saddies or nodes. !’
This information severeiy resiricts the search lor the
global confipuration of the separatrices.

In the following subsection, we exiend our previpus
wark® to generate residue curve maps gutomatically for
ternary sclutions with binary and ternary azeotropes.

¥
Ay = F‘:cxp(—

" These methods incorporate the use af the thermo-

dynamics and the mathematical theory ef dynamic
systemns to derive the residue maps. We also illusirate
these methods by derfving the residue corve map for the
ethanol—water—eyelahexane system,

2.1 Degign and implementation

The procedure for constructing the residue curve map
and extracting regions of qualitatively similar belpvior
bounded by distillalion corves has besn implemented
using Mathemarica.'® The flow chart for this procedure
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Table 1. Sysiem parameters for acctone—isoprapanol—water ternary azeotropic system and inpot parameters for the batch distillation

columns {Figs 1 and 3}

System paramctets for acetone-isopropanol—water

Component § Antoine constants Wilson eanstants Rel. vol.
A; B, o Vi A Az Ay model
Acalong 4:23633 12100595 -43.336 7405 13 —203114 a70-487 2790
Izapropancl 599476 00330 20364 76532 303-1E3 1-0 356-390 1-000
Water 319050 1730630 39574 18007 1251017 1294715 1-0 0-367
Tnput parameters for the barch distillation columns (Fig. 6}
Componet | Feed composition
Casc {a) Case (b}
Acctone 005 0-10
[saprapancl 0-40 0-40
Water 035 0-50
Number of plates 3 5
Malar vapor rate 540 30
Molar leed tog-n 1000
Haoldup (%) G 6
Table 2. System parameters For cthanal—water—ryclobexane fesnary azcotrapic system
Cromponent f Antoine constants Wilsan constanis
4 5 g, Vi A Aiz Ay
Ethanol 5-2314 1502864 —de-k16 36-68 10 288-9156 1594- 2008
Water 5-t905 1730630 —30-574 18-0% 9520073 -0 18155-835
Cyclohexane 39708 1206-470 —49-854 108-75 3902058 35623-307 10

is presented in Fig. 1. We have also indicated in the
fipurs how the use of the thermadynamics allows us to
bypass the search for limit cyclea.

For & given system of differential equations we first
identify the equilibrivm points and the topolagical
structure of the paths in the seighborhood of thess

[_rhﬂx.Y}. y=Qixy)

!

Eind Equilbrium Prs _.'l

1

Claz<ity Equil. Frs

nenhyperballc

points, The stability of Lhese equilibrium points and
theit local behavior provides the first, altheugh local,
indication of where the system might settle in the long
run. Sometimes the lacal behavior about the equilibriom
points catmat be determined based on linear approxi-
malions, Such points are called monelementary equili-

Construct Residue Map
)

Mumere Sampling
4

Asymptotic Bahaviar

¥ 1
Find Global Integrale [~ Thermo: __f i
dymamics
] f
¥ [
Check DulacBerndivson | . . _ _ _p| Find Topographic Curves

Fig. 1. Flow chart for residue curve map anabysis.
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brium points and we have not deait with such paints in
this paper. Finally, the program examines the asymp-
totic behavior of the paths as r — oo, This is done by
configuring the globai behavior of the separntrices by
using geometric constraints about adjacency.

2.3.1 Finding the equilibriz

At equilibrium, {dx/df) = 0, {dy/dr} = 0. The equations
cannot be solved explicitly and hence the program has to
use numerical metheds to idendly the equilibrivm
points. We have used secant methods to identify binary
equilibrium points and gemeraifzed secant methods for
termary equilibrium peints since the derivatives of the
simple distillation equations are not easily characterized.
The convergence of numertical methods depends criti-
cally on the initial values provided to the subroutines.

For the distillation process, the region of search is

saverely comsirained by the conditions T, =1, We
have found that by sampling the simplex uniformly we
are able to identify all the azeotropes in all the examples
we have examined, It eppears that the secant methods
provide robust methods for identifyving the tinary and
ternary azeotropes.

For example consider the eth anol—water-cycloherane
system. The vectar coefficients 4, B, &, ¥ A for this
system ate provided in Tables 1 and 2. This system has
tarer Binary azeotropes ((0-457,0), (0,0-299), (0-89.0-11}.
Motice that the points (0,03, (0,13, €1.0) correspond to
pure compositions. The system has ome temary azeo-
trope {(+316,0-15),

2.3.2 Classifying the equilibria
The classification of the equilibrium points is based an
the local bebaviour of the system about the equilibrium
pointe. In order to classify the equilibrium points we
linearize the eqguations about the equilibrium points and
evaluaie the eigenvalnes and the eigenvectors of the
linear systern. For a termary system this procedurs js
straightforward, and the partial derivatives are calen-
lated using perturbation methods. However, for equili-
brium points on the boundaries sueh as the binary
azeotropes and thé vertices we need to remember Lo
tvaluate the partinl along directions from within the
simplex and then use these partials to ovalugate the
cipenvalues and eigenveetors. We use simple rules
regarding the appropriate dircctions for evaluating the
partinls for the vertices and Winary azectropes.

For the ethanoi-water—cyclohexane system, all the
binary azeptropes are saddles and all the vertices ars
stable nodes. The ternary azeotrope is an unttable node.

2.3.3 Configuration of the separairices

Once we have all the cquilibrivm points of a given
aystem we can list al] the separatrices of the systen, since
we know that saddlepoints give rise to ore stable and
one unstabie separatrix, and stable {unstable) nodes give
tise fwo stable (unstable) separatrices. We also have

wWater
a(0,1}

{0,316, 0,153
19.88,

(0.457,00 i1, 0
BEthanol

Eycla
hexanes

Fig. L. Residue curve map,

aveilable to us the Tocal behavier of these separatrices.
The characterization of the glabal qualitative behavior
of the separatrices is just the question of how to lifik up
each separatrix beginning at one equilibrium point with
its corresponding end at another {or the same) peint,
The search for the possible global configuration is
constraimed by rules derived from topological considera-
tions. Thess rules are discussed in detail in Ref. 6. Here,
we discuss how these rules constrain the separatrices for

. the ethanoi-water-cyclohexane sysiem.

Since all the binary azeotropes are saddlepoints and
iie on the edges of the simplex, the edges are neccsiarly
the separatrices of the binary azeotropes. Moreover, all
the wvertices are siabie nodes, therefore the unstable
separatrices emanating from each of the binary azeo-
tropes terminate at the vertices moving along the edges
{zee Fig. 7). The unstable separatrices for each of the
binary azeotropes emanate from the unstable Llernary

- azectrope and divide the residue curve map into three

qualitative different regions. The unstable separatrices
of the ternary azcotrope asymptotically evalve towards
one of the vertices. The complete residue curve map for
the ethanol-water-cyclohexane system is provided in
Fig. 2.

2.4 Comparison with other wark

In a recent paper, Foucher er a."? provide an automatic
procedure for the determination of the atructure of
simple distillation residue curve maps for ternary
mixtures, There are two main differences in the
approach presented in this work. First, Foucher
et al." have assumed that the knowledge of the boiling
temperatures and compositions of the azeotropes are
known, whereas we use secant methods to determine the
azeotropes. Second, Foucher er af. ' use rules 1o classify
the azsolrepes as nodes or saddles, while we use
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lincarization along specific directions to classify the
azeotropes as nodes or saddles. Although the procedure
presented by Foucher ef al'* is elegant [or temnary
systems, our approach is more general and can be casily
extended to higher order azeotropes. In another recent
papct, Bossen ef al.!’ prasent the computational toels
needed for the simulation, design and analysis of
azeotropic distillation columns, However, they de not
perform any qualitative analysis of the differential
conations, in contrast they simulate the separatrices
dircotly. In our approach, we first classify the azeotropes
and determine their global configuration based on the
nature of the azeotropes and then use this information
ta guide the numerical simulation of the separatrices.
This approach provides a better handle for designing
sutomatic procedures to determine the structure of
simple distiflation residue curve tmaps for temary and
higher order systems.

3 THE ABSTRACTION PROCESS

In Section 2 we deseribed 4 program based on the quali-
tative analysis of different equations, which automati-
cally constructz the residue curve maps for ternary
azeolropic syslems. [n this section, we present the
abstraction process used to derive simplified models of
ternary azeotropic batch distillation. We deseribe the
application of this abatraction process o the accione-
isopropanol—walter system and vse it to illustrate three
points:

i. The need for constructing the residue curve
pap of the simple distillation process in the
absiraction process.

2. The high accuracy of the abstract mode] in
comparison Lo rigerous models,

T - Cridbeferninl laterial Dalines EquABan]

3. The substantial savings in the computational
effiort by using the abstract madel.

The process of sbstraction for termary azeotrope
batch distillation colemns is shown in Fig. 1. The
gualitative anatysis of the nrdinary differential equations
(deseribed in Section 2.1) to construct the residue corve
maps can provide an approprizte tool for generating the
knowledge of azeotropic poinls and distillation bound-
aries. The mathematical theory of nonlinear dynamics
and the onderlying thermoadynamics are used to extract
automnatically the azeotropic points and distiliation
boundaries of the stmple distillation process. The
knowledge of these boundaries is then used to derive
simplified vapor-liquid equilibria (VLE) medels for
cach of the regions in the composition space separated
by the distillation beundaries. The abstract models are
then construcied using these simplified YLE models.

3.1 The cxtended stort-cnt moethiod

The shari-cut method for batch distillation'® is based on
the assamption that the batch distillation ¢olemn can be
considered as a continuous distiflation eclumn with
changing feed at any time instant. The short-cut method
provides substantial savings in terms of the computa-
tional efforts, and their validity has heen tested
extensively for ideal as well as nonideal nenazeotropic
systems, with and without holdup.”® Tt has been found
that the short-cut method can yield reagonahly accurate
rasults for nearly ideal systems and columns in which
holdup effects are not sgvere. For columns with large
holdup, a lumped dynamic element is introduced at the
top of the column to account for the gradual variation
of the praduct composition. The prefiminary results of
this modified short-cut methed show that the inclusien

TDEL - Dberesmial Energy Dalames Equadans
VLE - Wapor-limuid Equilibrin Calmilnions

@:mpnrlsnﬂ of Tramsdenl 'Prrlﬁ[c:)

HG - Hengepsheck Geddet' Bquations

FUIG - Femke-Undermnod. Gillilmd Eq_umlm;/

Ahbatract BEndelsRorl-cal Methnd

i

Giobel Peoperiles
kg [easible Tegintt

Chialitatins AnAlyss

‘\

Rigaraws ModaliFlmnilatinn

DMB. OER. ¥1B

. Simnlafying OB, FFE. Y1LE
Aazumipelons OME. OER, YLE
Simplified
ThmiynAmics: DMA. DEL, YLE
GimEe.
Pl bt e

af Diffesensial Equallens

Fig. 3. Schematic of the abstraction process.
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of the dynamic effect in the short-cut methoed captures
the holdup effect to a large extent.”

The short-cut methods are based on the assumption
of constant relative wolatility through the columm,
updated at each time ingtant, and use the following
relatiemship for obtaining vapor-liquid equilibria:

4 fE

=R
2 ok
k=1

where y; iz the vapor composition af the component § in
equilibrium with the liquid compoesition x; ol the
component §, and oy i the relative volatility of the
component £

However, in the case of azeotropie systems this
telatten 8 no longer valid because of the azeotropic
points (whore the relative volatility becomes unity) and
the distillation boundaries {which bounds the distillation
paths). The azeotropic points and distillation bound-
anies offer impassable barrier/barmers. For binary
azeatropic systems, Anderson and Doherty™ transform
the variables of binary WYLE caleulations by splitting the
equilibrium curve into two regiona. This approach fa
used for extending the short-cut method to binary
azeotropic systems. The bottom curve below the
azeotropic composition of component 1 iz represented
by

¥ 7 =12, .n {3

' bl |

= xy=1—x
- . (4]
J’l=ﬁi a=1-3
and the top curve is given by
x —x7
'|=11_x4i|]7i x5=1_xl;
= F )
s FL=M P
S ERES]

The equilibriuom relationship for the binary system in
terma of the transforrned variables is represented by

; %

It has been found that the preliminery estimates of this
extended short-cut methoad for ideal binary azectropic
systems compare very well with the rigorous models and
it offers significant computational savings over the
riporcus madels (for some cases, the short-cut model
was found to be 200 (o 300 times lasicr than the rigorous
models). For details of these preliminary studies please
refer to the recent paper by Diwekar.!

For temmary systams, although the transformation of
variables 1z key for extending the short-cut methed, the
impassable barriers are not represented by the azeo-
tropic points as in the case of hinary azeotropic batch

Z2=Propanal

rﬂ':' "“"--.._'

=
8 Warar

T

Fig. 4. Residue curve map for acetone—isopropancl-waber,

distillation. Rather, the distillation boundaries play the
important role of representing the impassabic barriers.
To identify the distilletion boundaries, the construction
of restdue curve map is casential. Theze distillation
boundaries can then be vsed 1o separate the distiltation
regions, and the trisngular phase diagram can be
divided accordingly, The variables are transformed in
such & way that each region will form a separate

- triangufar dingram. The thermodynamics of cach region

is represented by the constant relative  volatility
equations. The short-cut method and the modified
short-cut method (for Targe holdup’ considerations) are
then extended uwsing these ‘transformed wvariable'
thermaodynamic modeds,

3.2 Example of ternary azeotrople distillatinn

Te illustrate the abstraction process and to demanstrate
ita advantapes we present an example of a ternary
gystemi conlafning  acetone—isopropenol-water. This
systern has one binary azeotrope and one separatrixt
(see Fig. 4). As a first approximation this separatrix is
approximated by a straight Bne. This results in two
regions ABD and ADC. In Fig. 4, the trongle ABD 13
represented by the foilowing transformed vartables;

xﬁ =2 _V':=}’|

PR I i ]
xz—xi,:1 ¥z }I.g: [?:I

H=1-u)—xh =1 -

The VLE data for the three components is gencrated
by using the Wilson eguation for liquid phase non-

tThis residue curve map is generated wsing the automatic
analysia of ordinary differential equaetions of the simple
distillation process described in Section 2.
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Flg. & Transient and siifl distillate composition profiles: (a) comparison of rigorous method with Wilson equation and rigorous
method with simplified YLE cquation: (b) Cotaparisan of rigorous method with Wilson cquation (with heldup effect) and shart-cut
methed with simplified ¥LE equation. (O, Acctone; @, sopropancl; &, water, x axes — compadition: p axes — batch time (h).)

idenfities. The wapor pressure equation censtants and
Wilson equalion constants needed to carrchale the vapor
composition 1, to the Hguid composition x, are
presented in Tabies 1 and 2 for this ternary system. ¥
The constant relative volatility is obtained by averaging
over the trangle ABD and using the transformed
variables. [n the tables, we have also provided the
approzimate equilibrium relationship in lerms of the
constant relative volallity model {or the triangle ABD,
The abstract model is computationzlly about 200 times
faster to analyze. To check the thermodynamic approx-
itmation, the rigorous model for batch distillation is also
extended to include the comstaml relative wolarility
“ansfoTTed variatite Towdel. The results of both the
extended shortcul method {or the azcotropic system
and the extended rigorovs method (rigorous method
with simplified VLE) are compared to the rigorous
riethod with the teal thermodynamic model. These
comparisons are presented in Fig. 5. 1L can be seen thatl
the agreement between the constant relative volaulity
transformed variable thermodynamic model and the
actnal Wilson equalion mode! is very pood (Fip. 5{a)).
The extended short-cul method also compares very well
with the riporous madel (Fig. 5(b}),
I'ts shorl, this absiraciion process involves:

» identification of distiliation boundaries and azzo-
tropic points;

« transforming the variables and penerating simpli-
fied ¥LE model,

#Tn the Antoine eqoation the pressure is en aim and the
temperaturd i$ in degrees” Kelvin and the Wiison cquation
constants atc @ven in cal/mol, Data obtgined [rom Ref, 22

¢ cxtending the shorl-cut methods using the trans-
formed variabies;

validating the extended methods with rigorous

L ]
madeis.
The encouraging prelimingry resuls in the case of

binary 85 well as emary syslems suggests that this
appronch will provide an efficienl preliminary design
tool

4 CONCLUSIONS

This papet presents the first engineering application
of a new approach Lo qualitative analysis of dynamic
systeris. This new approach in Al which is based
on the mathematical theory of nonlinear dynamics,
represents a promizing area for useful enpineering
applications. We have nsed this approach to analyze
the thermodynamies underlving areotropic  batch
distiflation.

Residue curve mapa for azeotropic distillation systems
are automatically generated and used to derive
computationally efficient and accorate models, These
abstract models provide a powerful tool for preliminary
analysiz and optimization of ternary batch distillation,

Doherty and coworkers' 2~ have shown that a
knowledie of residue curve maps provides insiphts into
the problem of ternary azeotropic distillation. The
sulotnAtic analysis framewotrk presenied in this paper
will case the process synthesis. design or optimization of

-—ternaty - erEctTopic -continpous or-—batch  distillation

columns, as shown in the Fig. 6. This ramework wiil
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Fig. f. Seape of the automatic analysis of residue curve map.

also ailew one to explore the possible extension of this
theory to azeotropie systems consisting of morz than
three components.
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