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Technical and economic unceriginies are not rigorously trealed or charactarized in
most preliminary cost and performance estimaies of integrated environmental conirof tech-
nologies. Nor do current design methods rigoroisly address the issuer of optimization
under uncertainty, Furthermore, the process economics and a aumber af other quality
measures, slich as controllability, safety, complianee with environmentat and other repi-
lations, largely depend on the results of process synthesis stage. This concepiual desipn
stage involves identifying the basic flowsheet structures to be used from a typically large
rumber of aliernatives. This paper describes the advanced computer-based methods for
draling with uncertainties that are eritical to process viabifity, and for itcorporating such
Jactors inte the synthesis and optimized design of advanced environmenial controt Syriems, B o

Preliminary resulis are presented iffustrating the nse of these pew modeling tools for the
environmental control design of advance iniegrated pasification combined cvele sysiems

using het zas cleanny,

INTRODUCTION

Increasing environmental awareness and regulations coupled
with soaring waste management costs have created the need 1o
incorporaie more environmental cansiderations into the design
and operation of industrial chemical processes, These envi-
ronmental biectives have placed new requirements on process
tlata and models, as well a5 increased the need for sophisticaled
simulation lechnology te quantify the impact of poflution pre-
vention aptions,

In the 1970s, the design of environmentally eompattble
manufactoring plants generally meant the vse of end-of-pipe
treatment or separation devicss through which effluent gases
or liquids would pass on theit way to the enviranment. Since
then, a movemnent has grown that stresses waste reduction or
poliution prevention during the carly design stages of a pro-
cess, and the concept of iniegrated environmental control has
been gaining significant attention. The fundamental differ-
ence berween conventional modeling and the new allernative
of inteprated environmental echnologies, is the problem of
uncertainlies, since the availabls performance data are seant
and the technical as well as (he economic parameters are not
well established. Moteover, many of the environmental pro-
tesses are poorly understood and accurate predictive models
do not exsst. A framework for uncertainty analysis promises
t provide an answer to these questions,

‘Though design under uncertainty has received consider-
able apention in the chemieal engineerin g literalurs during the
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past few years (Pistikopoulos and Grossmann, 1988; Straub |
and Grossmann, 1990; Vervarezos et al, 1993: Cirle and -
Huehette, 1993), 2 generalized framework for analyzing uncer-
tainty systematically has only recenily bean developed arounda -
chemical process simulator (Diwekar and Robin, 1991). This -~
capability has beat used seccessfully for the evaluations of =
different configurations of “Integrated Gasification Combined
Cycle Systems™ (IGCC) which represent a elean and cfficient
uge of coal {through reduction of NOx and 502 for electric.
power generation (Frey et al., 1993}, Currently this capability -
is centered around the public version of the ASPEN steady- -
sate simulator.  However, the methodology is general and
could be extended 10 any other simulation envirgnment. The..
first seetign of thiz paper will briefly discuss the methodology. . _
The rend in stochastic modeling is ateo reflecied in_the
“stochastic optimization™ and “stochastic programming” liter-
atare. Mast of the work in this area is restricted to small scale
Imear and nanlincar programming problems of specific forms -
{Nemhauser et al., 1990: Ross, 1983: Davis and Yinter, 1985).
Many of these salntion techniques involve a highly formalized .
afruciure, require certain distributions on the modom groeriain:
ties or restrictions on the form of the abjective function, ofien
require convexity of the feasibility sel and quasi-coneavity of
the probability measure, and typically do not invelve large
numbers of varying quantities. Furthermore, the stochastic
optimization and stochastic programming lilerature very.of
ten divides the problems into gategorics such as “wait &n
see”, “here and now” and “chance constrained optimizatior :
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" {Vajda, 1972, Nembauser et al., 1990 The “wail and see™
problem of Madansky {19640), originally called “'stochastic pro-
pramming” by Tintner {1955}, is in a sonse not ong of decision
analysis. In decision making, the decisions have 1o be made
“here and now™ about the activity levels. In “wait and soc”
wi wait untl an observation is made on the random elements,
and then solve the deterministic problem for cach sample. The
“here and now™ problem, also referred 1o as the “stochastic
optimization” problem, involves optimizaton over some prab-
abilistic measure — nsually the expected valne. In that sanse,
chance comstrained optimizaton problems can be included in
this category of stochastic oplimization. Chance constrained
optimization involves conslraints which are not expecied tobe
always satisfied, but only in 2 proponion of cases, or “with
piven probabilities.” The literature on chemical process design
under uncertainty also involves problems ke multipetiod op-
timizaion (Helmaneg, 1979, and design for oplimal fiexibilily
{(Grossmann et al., 1983; Straub and Grossmann, 1990) etc.
These various categories require different methods for their
solubog.

This paper describes a framework for solving different
slochastic optimization and siochastic programming problems.
Al frst, the various problems reported in the literatore on
stochastic optimization/programming, and chemical process
design under uncertainty are divided into two categories: 1)
Stochastic optimizaton, and 23 Stochastic programming, The
“here and now" problems involving axpected valoe minimiza-
tion, the chance constained optmization problem, and the
design for optimal Rexibility problems all require that at each
optimization itaration some probabilistic representation of the
ubjective function and constraints to be aptimized. These prob-
lems are classified as stochastic optimization problems. On the
other hand, the “wait and see,” “flexibility index” and muli-
pericd optimization problams involve solution of 2 datermin-
istic optimization preblem for each scenario so that one peis
a probabilistic representation of optimal solutions, Therefore,
theae type of problems can be considersd under the second
calegory namely that of stochastic programming. This new
division makes it easier 10 pencrglize the use of this new ca-
pability for different kinds of optimization problems under un-
ceftainty and 16 design a uniform framework for solving large
scale problems. The second section deseribes these two cate-
pories in detail. The generalized framework designed around
the public version of ASPEN gimulator is presenied, followed
by solution o stochastic aptimization and stochastic program-
ming problems encounigred in a hol gas eleanup inlegraied
Easification combined cycle IGCC) system.

Integraied environmenial cantrol processes may employ
aliemative paths and raw materials to reach the desired prod-
uet. Ona of the major goals in process synthesis is to establish
methodolapics for determining optimal flowshest configura-
tions. The rescarch in chemical process synthesis has advanced
considerably in Iast few decades and a number of packages now
provide an environment for solving synthasis problems (CPS,
1993, APROS (Paules and Floadas, 1959}, DICOPT++ (Kocis
and Grossmann, 1989; Viswanathan and Grossmann, 1990),
PROSYN (Kravanja and Grossmann, 199073, Howazver, (hese
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packages have some practical limitarions; for example, it may
be oo cumbersome and Hme consuming to handle complex
chemical processes such a5 those typically encountered in a
realistic plant.

Sequential-modular simuiators like ASPEN and PROYII,
have grown in sophigtication over the years and are widely used
in the chemical industries to solve complex problems with rig-
orans precess medeling,  Therefore, it is more desitable 1o
build the process synthesis capability around such simulators,
A new process synihesis capability built around the public ver-
sion of ASPEN gimulator (Diwekar et al,, 1991} represents a
step in this megard, The third section af this paper will be de-
voted bo describing this mixed inteper nonlincar programming
(MINLP) process synthesizer built aropnd the ASFEN simo-
lator and demonstrating its use via an illustrative case study
of a complex envirgnmental flowsheet However, the MINLP
approach to process synthesis also encounters some dilficnl-
tics when faced with Lhe problems of nonconvexitics, large
discontinuities, local minima, and implicit constraints,

The aliemmatve to MINLP process synthesis is to use sim-
ulated annealing.  Although simnlated annealing is compu-
lationally intensive w MINLP synthesis, it sircumvents the
problems associated with MINLP synthesizer, Furthermore, a
new algorithm “stochastic annealing” (Painton and Diwekar,
1994; Chaudhun and Diwekar, 19944 b) is developed which
efficiently optimizes a prohabilistic objective funclion. Section
four briefly describes this new alporithm and is applicahility.
The, essence of the paper is presented in the lasl sccton on
conclusions. -

A  PROBABILISTIC FRAMEWORK
FOR UNCERTAINTY ANALYSIS

A new sinchastic modeling capability has been added o the
public version of ASPEN by Diwelkar and Ruhin {19913}, To
implement the stachastic modeling capability, ASPEN"s mod-
ular nature has been wilized. A new unil opemtion block
STOCHA has been added wo the ASPEN unit operation library.
The structure of the block and its vse are briefly described
below. Details are provided elsewhere (Diwekar and Rubin,
1991},

The swchastic module assigns the probabilistic distribu-
tion to the model input parameters, then uses a sgampling tech-
nigue b generate 8 specified nember of samples and passes
the sampled value of each pacameter to the model. After each
model ran, the output variables of interest are collected, The
simulation is then repeated for a new set of samples selected
(tom the probability distributiong. After all tha samples have
gone thraugh the cycle, the stochastic medule analyzes the
cutput and presens e likelihood of the ouicome in erms of
probabilistic disiributions. [t alsa provides the sensitivity anal-
yiis informavan in terms of pariia! correlation coofficients and
standardized regression coefficients,

in stochastie modeling, the uncertain or varjable parame-
ters in the model are expressed in lerms of probability distribu-
tivns. These probability distributions show the ran e of valucs
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the varfablz conld take and the likelihgod of ecorrence of each
valug within the range. Thus, the dismibution defines the rule
for describing the measures asgociated with the values of a
random (uneertping variable, Probability distributions may be
deseribed in their entirely as cumuladve distribution functians,
or by sclecied parameters, such as fractiles and momenis (e.g.
mean, variance}. A more compicte review of these methods
may be found in Morgan and Hearion {19900,

As can be ervisioned from the staps outlined above, the
sinchastic modeling (depending on the number of samples)
may require large computational efforts. The computationaily
intensive natore of such analysis makes the research 1o refine
the sampling technigue very impaortant especially when onc is
solving problems like stochastc optimization and stochastic
proccss synthesis,

There are many ways of sampling from probability distri-
butions, of which the best known is Menie Carlo Simplation.
In erude Monte Carlo analysis, sample values are drawn al
random from the distributions of sach input variables, Tt is
aften not realized that the value of the Monte Carlo methods is
not primarily the randomness of the sampling hut the resulting
equidisiribotion properties of the sets of points in the parame-
ter space. Once it is recogmized that a primary objective is o
produce a more uniform distribution of points in space, then
systematic or swatified sampling technigues become appeal-
ing {Morgan and Henripn, 1990). Latin Hypercobe Sampling
{LHS) (Iman and Shortencarier, 1984) which represents a form
stratifled sampling is often used to provide bettar uniformity
properties and is avaflahle with the stochastic blnek,

Ressarch is also being camied out o improve the uni-
[ormity of sampling technigues and a new and more efficient
sampling technigee based on Hammersley points has emerged
from these efforts (Kalagnanzm and Diwekar, 1954),

METHODOLOGY FOR STOCHASTIC
OPTIMIZATION AND STOCHASTIC
PROGRAMMING

The probabiiistic framework entlined earlier can not only he
used for pelting the likelihood of an outcome, but can also
provide a basis for research prioritization, comparison of dif-
ferent technolopies, feasibility studies, risk analysis ete, This
swchastic modeling capability, along with an aptimizer, can
solve different stochastic aptimization and stochagtic program-
ming problems, as discussed below.

The Optimizer

The goal of an oplimization problem is 1o datermine the desi-
sion variables z that optimize some aspect of the determinislic
model represented by the objective function 2, while ensuring
that the model operates within establisherd limits enfarced by
the equality constmaiats & and inequality consraints . A pen-
cralized siatemnent of this problem is given by the following

Folliztion Prevention vIo Progess apd Product Modilications
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Figure i: Fictorial Representation of the Oplimization Frame-
work

crnatiarn, .
Optimize £ = z(x} (1

subpeet 1o .
hiz) =0 (2
gfz) <0 ES}

where z is a decision varable vector, The gbave formuelation - -
represents the deterministic optimization problem, for which a.
peneralized iterative solution procedure is ilostretead schemat-
ically in Figure 1. As seen in the fipure, the optimizer invokes:
the model with a set of values of decision variables z. The
model simulaes the phenomena and calculates the objective
function and constraints. This information is utilized by the:
optimizer t calculate a new set of decision variables. ' This: -
lterative sequence is contineed until the optimization criteriz:
pertaining to the optimization algorithim ore satisfied: Tn i
case the model which is used is deterministic in natre. "~ -

The optimizer block, OPTM, has been implemented: in:
ASPEN a5 & unit operation block. The QPTM block is-&
flowshaet optimization block which solves the nonlinear: ﬂpn
mizalion problem (NLP) deseribed above,

Recent advances in constrained nonlinear optimization
techmiques provide betier choices for solving large scale: flow:
sheet problems. The most popular of these methods are gener:
alized reduced gradient (GR(G) and successive quadratic pro-
gramming {SQP), and (heir varfants, Among generalized re-
duced gradient methods, the most widely nsed algorithms:are:
GRG2 and MINOS (Gill et al., 1981), Most Hierature on larze -

Loal ..,.

algorithim requires canvergence of equality constraints:al cach
iteration. [n SQF, at each fteration the problem is nppfux}'
mated as a quadratic program wheee the objective funcuuﬂ

quadratic and the constraints a2 lincar. Similar to linear
gramraing, the special features of a quadmatic uh;ecnve
tion are exploited to soive the problem more efficlently::
quadratic programming subproblem is solved for each 5|
ohiain the nexi irial poinl.  This cycle is repeated untd
optimum is reached. The NP opimization hlock in AS
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OPTM, generates decision variable sets using the SCP method
(Biegler and Cuthreil, 1985). The modular nature of both the
stochastic and optimizatian blocks allow one 1o salve differen;
stochastic optimization ang sigchastic programming problemg
encountered in practice, The following subsection deseribes
this functionality.

Stochastic Optimization

wide variety of problems, is 1o assizn g probability disiribution
to the various uncertain or variable parameters,

The gencralized Stochastic optimization problem, where
the decision varisbles and uncertajn parameters are separable,
can then be viewed ag:

Optimize 57 = B (F(8, z,w)) {4

subject o
Ea(h(8,z,u)} = 0 (5)
Btz u) <0) > o (6)

whert u is the vector of uncertgin paramelers and the F rep-
rEsents the comulative distribetion functional which for an ex-
pecied vatos minimization reduces to:

1
EFe) = [ P, G

This function can be calenlaged by sampling the funciipy
and caleulating the expecied valye of the samplos.

E(F(u)) = _____‘ZfJN'" i)
amp
On the other hand, in the case of chance constminegd ap-

timization the constraints are Tepresented in terms of a proba-
bility af excecding certain value and is represented by;

{8)

Optimize £ (2{z,u)) = E{F(u))
a

(%

subiject o
Ph{z,u) > ) < P,

where Equation 10 is the chance constraing.
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Figure 2; Picioral Represeniation of the Stochastic Optimiry-
tion Framewnrk

number of samples teguired 1 obigin the accurate probabilis.
bie Functional depends on various faciors, The accuracy of
these estimates jg tiscussed in the context of synthesis under
unceriainty,

Fipure 2 represents 1he generalized stochagtic Optimiza-
tion problam =olution Drocedure where the deterministic modal
in Figere ! is replaced by an iterative siochastic madel, Figure
3 Ulustrates the ASPEN tmplementation,

v This stochastic optimization capabilily can also be used o
achiove aff-ling quality control. In off-line quality controi, the
sensitivity of the design (o the sources of variation is reduced
at the design stage to make the controller design ensier. One
such approach based on the concent of Taguchi's paramerer
design method has been Hlustrated using the above-mentioned
stochastc opimization capability {Diwekar and Rubin, 1994,
This approach involves minimizing the variance of the objee-
tive (unction instead of the expected value,

Effect of Uncertainties on Optimal Design

In contrast 1o the stochastic optimization problems, which in-

at cach random stage or random sample, which is the same as
solving multiple deterministic oplimization prohlems, and can

be represented as:

Optimize 2 = z{z, u)) (I
>
subfect 1o
bz, us) = {12)
glzux) < 0 (13)

where uv is the vectsr of valies of uncergin variables oor.
respanding o some sample. This optimization procedure is
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Figure 3; Schematic of ASFEM Sinchastic Optimization Framework
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Fi!;m: 4. Pictorial Represeniation of the Stochastic Program-
ming Frameswork

repcated for each sample of uncertzin variables 1 and a proba-
bilistit representation of outcome is obtained. Figure 4 repre-
sents the generalized solutien procedure where the determin-
131¢ problem shown in Figure 1 forms the inner loop, whereas
the stochastic sampling forms the cuter loop. This procedure
1§ implemented in the ASPEN simulator as shown in Figure 5,
From the ASPEN representation, it is clear that by just inter-
changing the position of stochastic block, STOCHA, and the
optmization block, OPTM, one can solve almost all the prob-
lems in the stochastic aptimization/programming liteeaturs,

METHODOLOGY FOR THE PROCESS
SYNTHESIS CAPABILITY

:[hn alternatives for process design often ace sumerous and
znvialva A very large search space. Selection of the best alter-
nauves can offer the posential for significantly reducing costs
and/or impraving performance. Therefore, there is a strong

need for “systems™ research 1o identify the best ways of con-
figuring environmental control processes. The curreny sate
ol process gynthesis iechnigues involves: (a} the heuristic ap-
proach whichi relies on intuition and engineering knowledge,
{1} the physical insight approach which iz based on exploiting
basic physical principles, and (c) the optimization approach
which uses the mathematical programming lechniques, This
section deals with a newly developed procesa synthesizer built
around the public version of ASPEN, using the mathematical
pragramming appreach (Diwekar et al., 1991).

The Mathematical Programming Approach

The mathematical programming approach 1o process synthesis
involves: :

(a) Formulation af 3 flowshest superstruciure incorporating
all the: atemative process configuratinns.

(b} Modeling the superstructore s a mixed integer nonlingar . -
programming (MINLP) problem of the form -

(s

MINLP: .
Z= min &§+ fFD a4
%5, § S
suhject 1o
A(E,T) =0
hlEFT = v—z(3) =0
BTY + o570 < 0
veEY,xe X
wiere

1= [y|Ay £ a, {0, 1]7]

X = [z|z < zleaz")

The continuous variahles zmpmsentﬂnws,npmti_ﬂg'ﬂﬂﬂ'
ditions, and design variables. The variables v are e
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Stactimeile bloes
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P
M

{€) Idemiification of hath (e optimal configuration ang oper-

alny process paramelsrs by an algorithrn baseg on alier- HILE dater
mALNg sequenice of nonlinear programs (NLPs) and mixed P
integer linear programs (MILPs), Topelagy
The ASPEN MINLP Process Synthesizer
The MINLP process synthesis capability in the public versign et e e
OF ASPEN is based on ZOOM (Marsten, 1986), the mixed inge. —[:[:g - ‘{ ]
ger linear programming (MILP) solver, and on SCOPT (Lang
and Biegler, 1987), the nonlinear programming (NLP) solver, r Plonaheet Cateutatlone
The methad is based on an algorithm called GED/OA/ER/AD AT
presented by Diwekar er. a) (1991} which involves solution of Sepersiniamin:
alternate sequence of MILP and NLp problem solving, The E E

HNLP Optimizar

the THAster prodlem. The MILP sglver (Master) and NLP
optimizer have been implemented in ASPEN as unit operation Optimalsohion mz *
blocks and can be execited easily with the ASPEN process

unit bipcks,

ture. The inftialization of the continuous and binary variables ~ Figure 6: Sehemaiic of the ASPEN MINLp Synthesizer

in the inper loap, which results in the objective fenction anq
linearization information, This information is passed 1o the
Magter block which inemally modifies the master probiem o
include the Lnearfzation information. The solution of the mas.
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ter probiem results in a new Mowsheel structure. The iteration
siops when there is no improvement in the ohjective function
vahue,

The Implicit Constraint Problem

The implementation of (his new capability in a sequential
modular simulator poses challenging problems which are not
encountered in equation-oriented simulators; therefore, now
sirategies are necessary to solve these problems. One such
problem aseociated with the MINLP sequential modular pro-
cess synthesizer is that of implicit constrainis,

The problem of implicit constraints is cncountered be-
cruse of the black box nalmre of the modets in sequenial mod-
ular gimulators. The ASPEN MINLP envicgnment is based on
a two-level optimization algarithm consisting of an upper level
MILF master problem and a lower level NLP problem, The
MILP master problem predicts new binary variables, while the
NLP problem provides new continzous variables. The MILP
master problem represents the linearized NLP problem with
non-fixed binary variables, since al each stage (he MILP mas-
ter problem obtzing the linearizadon information from (he NLE
optimizer. Uniike equation oriented simulaiors, in sequential
modular simolators most of the nonlinear constraints are not
represented explicitly by equations. The lincarization infor-
mation on thege constraints, which are essentially black box
retations embedded in the simulator environment (h1(Z, 5) in
equation 2), therefore must be passed to the master problem.

Inorder to circumvent this problem of implicit consraints
new decision varisbles arg created. These are equaied to the
output variabies from the flowshect configurations, This pro-
cedure ensures that the original MINLP problem remaing the
same, while at each stage the MILF master problem receives
increased information from the NLP optimizer, Although this
procedure assures complete information transfer 1o the mas-
ler problem, it also incieases the computational losd on the
NLP optimizer, which is generslly the mte-determining siep
in the MINLP process synthesis, Recently Diwekar and Ru-
bin {1993) presented a pantitioning strategy which reduces the
computational Ioad on the NLP problem crucial for the solution
of large-scale synthesis problems.

Apart from the problem of implicit constraings, the
MINLP process synthesis capability encounters difSceliies
when function does not satisfy convexity conditions, for sys-
tems having large combinatorial explosion, or when the solu-
tion space has discontinuitics. Simulated annealing iz a re-
cently developed probabitistic method for combinatorial op-
timization based on ideas from statistical mechanics (Kirk-
parrick et al. 1983). The advantages of simulated anncaling
are that it is net 2 derivative based method and can handle
discontinuities in the state space much more easily, Hence
it provides an alternative (o MINLP synthesis. The syuthesis
problem usually involves discrete decisions and requires solu-
tign of combinatorial optimization problems, These problems
are much more difficalt to solve and computationally intensive
than cantinuous optimization problems. The inclusion of un-
cerlainty analysis in such large scale problems needs special

Pollution Prevention vis Process and Product Modifications
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care W handle the eombinatortal explosion as a resell of sam.
pling at each optimization step. The next section presenis the
stochastic annealing algorithm designed 1o efficien ty oplitnize
a probahilistic functional of the obfective. The method is first
developed for expected value of ohjective function (Painton and
Diiwekar, 1994) and further extensions of this mathod for other
prababilistic functions is nnderway (Chandhuri and Diwekar,
19044, 1994h).

STOCHASTIC ANNEALING FOR SYN-
THESIS UNDER UNCERTAINTY

The idez hehind the stochastic annealing algorithm preseniad
here is to allow the algorithm w select a trade-off between
sccuracy and computational efficiency. When the optimizer is
sill away from the optimum the efiteiency is more important
than accuracy and near optimum, the sccuracy is given mare
weight so that the optimizer converges 1o an accurate optimal
solution with minimum computational effort,  This stratcpy
also allows for anmomatic sample zelection which otherwise
requines extensive experimentation.

The Simulated Annealing Algorithm

The analogy in simulated annealing is to the behavior of phys- . -~
ical systems in the presence of a heat bath: in physical an-
nealing, sll atomic particles arrange themselves i a lattice
formation that minimizes (he amount of encrgy in the sub-
stance, provided the initial temperatore{Tiny ) is sofficiently -
high and (he cooling iz carriad out slowly, Ateachtemperatre
T, the system is allowed to reach thermal equilibeinm, which.
is characterized by the probability (Pr) of being in a state w:lh
energy B given by the Boltzmann distribution:

1 _
%—eﬁq"

P ' = (]ﬁ}-
where K, is lhe Bolizmann constant (1.3806 x -
102 F/degrecs i) and == is a normalization factor. '
In simulated anncaling, the objective function {usualiy. -
cos) becomes the energy of the system. The goal is o min-
imize the costfenergy, Simulating the behavior of the systent
then becames & question of generating a random perturbation
that displaces a “'particle” {moving the system to another ¢on-
figueation), If the configuration Srepresenting the setof the de-
cision varigbles £ that results from the move has a lower cnergy
state, the move is accepted, However, if the move is 1o 2 higher -
energy stalc, the mave is accepted according to the Metropolis -

criteria (accepted with probability = —e?&} {vanLaurhoven -
and Aars, 1987}, This implies that at high temperatres, &
large perceniage of uphill moves are accepted. However, 8
the temperalure gets colder, a small percentage of uphill mov
are accepted. After the sysiem has evalved o thermal eg)
librium at a given temperature, the temperature: i8-Towen
and the annealing process continues until the system reachEe s
temperatore that represents “freezing” (T = Tyreszel. 1!
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Alunganf Bavkailen, Gpper

uired 19 gencraie the probabilistic
functinnals of objective fanction aggd constraints, Given
ohservations y. of the randor variable ¥, the estimator for the
mean or expecied value 1) and variznce (oZ) are:

of = -Z-E-‘.L':y_:__j_f (18)

Number of samples, Forexample, Figure 7 shows how tha stan-
dard deviation of simple funcljon (&1 % 22) of twn variables
@1 {Uniform {10.200) and z, {Nﬂrma](ﬁ.i,lﬁ.ﬂ} is varying
with number of samples for Random Monte Carlo Simuly.

In cur siockagrie annealing we have psed this error width
as 4 penaliy in the objective funcrign allowing stnchastic an.
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but &3 it approaches optimun: jt accepts less number of uphilf
maves. This strategy is implemeniad in lemms of the cooling
i5 cr In stochastin anaealing

N‘.ﬂj A .
E(Z) = -E—J,L;l—;i'. + b[t}-j;gzih (19)
aam sargp
= ZETE -3 oy
o = J:.r,mp— 1t
(-——E——‘{N"”;&D; D% . ——-’“———E{N‘“’;%" 175 a0y
) TS

In tlmmcquatjuns, the first term 35 (he £xpected cast fune-
ton'and the sergng term is the penalty function where y?
Tepresenis the chi-sguare distribution.

- The weighing function &(t) can be expressed In fams
of the annealing temperatye levels. At high lemperares, it

D gel more aceurals Expecied costs, Thug p 4e initially very

small but increases with lemperature decreage, We used an
cxponentislly increasing fungtinn for b given by:
bo
Wy = @

where byisa smaltvalee (far cxampie, .01), Eiva Constan;

witich govems the rate of increase (for example, 9 and ¢ s the
lemperatore fevel. o

This algorithm wag found 1o be 50 15 89 % Iaster ag com.
Pared 1o the fix
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Fipurz 8: Schematic of the Lurgi Air-blown Dry Ash Gasifier IGCC System

control systems. An application of the synthesis capability al-
ready has been described in a paper (Diwekar, et al., 1992},
which focuses on choosing a least-cost approach to sulfur re-
moval for an IGCC system with hot gas cleanop and a Au-
idized bed gasifier. In this paper we show results that iflustrate
use of the stochastic optimization and stchastic programming
capabilities for the design of a different IGCT system with
ohjectives snch as cost and emissicns minimizaton, and risk
reducton. Thess objecives alsa form Lhe basis for synihesis
under unceriainty. Number of cass studies, related to advanced
control technologies selection, using the efficient stochastic
annealing algorithm ar2 in progress {Chaadhati ang Diwekar,
1994a, 1954B). Alhough, this approach 1 solving stochastic
optimizaton and stochastic programming problems is gencral

-and applicable lo wide variety of problems, it can be computa-
tionally expensive.

T illustrate the stochastic optimizatfon and programming
capghilitiez, an air-blown dry ash Lurgi gasifier IGOC systam
flowsheet with a plant size of 650 MW and a high-sulfur Tlli-
nois Mo, 6 coal iy snalyzed. A schematic of this technology is
shown in Figure 8. The hot gas cleanup system [eatees high
temperature (1100 degrees F) sulfur emoval from the foel gas
wilk z zinc fersite sorbent, and high efficiency cyclones and
ceramic filters for particulate removal. Details of the perfor-
rmance and cost todels are reponed elsewhere (Frey and Rubin
19922,

Twn key degipr variables for the Gxed bed zinc ferrite
process are the selfur absorption cycle time and the reactor
vessel length-to-diameter ratio, Another key area of uncer-
Lainty for this technology is the NO, emisston rare. To mitigaie
N0, emissiong, several approaches are possible, In the near
term, the most likely approech s the nse of post-combuston
exhauast gas NO, reduction wechnology, In the longer erm,
advanced staged combustion designs, featuring rich/lean com-
buston, may be commerclalizad and smployed for fucls with
high nimogen content. In thig stady, we consider the use of
selectve catalyde reduction {SCRY for WO, control. Ina SCR
gystern, ammaonia is injected into the flue gas upgiream of a cat-
alytic reactor thiough a set of nozzles comprising an injecion

grid. Because of the temperatore windaw required for iypi-
cal SCR catalyais, the SCR reactor employed with gas-tirbine
comhined cycle system are bypically located in the heat recow-
ery steam generator (HESG). We employ a new performance
and cost model of an SCR system (Frey, 1993) 10 explore the
effects of two key destgn variables; the required MO, removal
efficiency, which has a substandal impact an the catalyst wol-
ume requirement, and the camlyst layer replacemcnt interval,
which can be varied to achieve trade-offs between initial capital
costand annual eplacement costs for camlyst. :
Key performance and cost pacameters of the engiteering
models For the IGOC system were assipned probability distri-
bulions bazed on data analysis, literature ceview, and the elic-
itation of expert judgments, Through an intcractive screening -
process, the fnitial set of approximately 50 uncertain variables. .
was narrowed to a set of 20 which most significantly affecied
uncertainty in plant efficiency, emissions, capital cast, and 10~
12l levelized cost. A zample size of 25 was used to Hluzirae

the new capabilities. For details (e readers are referred 0 . -

Diwekar ef al, {1994). R
Figures 9 to 13 show the results of different stochastic

optimization and stochastic programming problems applicdto . - '

the IGCC fiowsheel.
Figure 9 shaws results of a stochastic optimization prob-
lem in which the expected eost of electricity (COE)-1s min-'

imized for different levels of NO, control. As the expecied ]

value of NO, emissions is decreased, the cost of the optimal
design increases, ag does the experted valne of NO, retioval -
efficiency in the SCR umit. As seen in Figure 9, the optimal
design reduces the expected COE by 0.5 mills/kWh relative
o the base case design achieving 0.44 Ibs NO,/10¢ Bux. For

the 650 MW plant modeled in this example, this is equiva- R

lent to & total savings of approximately $2 million per-yeal
in plant costs resulting from the selection of optimal. design
parameters in e zing fermite and SCR units. Figure 2. alse:.
shows Ihat the expected cost of the optimal design: increases
by 1.1 mille/kKWh as NO, is lowered from 0.6 to-0.2 1bs/1

Blo. Qver this tange, the optimal SCR removal efficiefcy
increases from 73% to 909 {the maximum value Bsi?l!iiﬁhﬂd
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ing some specified valye of cost. Figure 12, defines che risk as
by the performance model). This limizs the lowest achievable  probability of excoeding the cost (of elecrricity) 60 mills/Kwh,
NG, emissions o (.23 ihs/10% B {expecied valug), Then the problem ig formulated ag minimization of this rigk
Figure 10 pext showg the effect of uncamainties on the Subject 1o the chanee censiraing of probabilily of exceeding the
cast of an optimal design for the case of NO; emissions con-  NO- emissions of 0.35 1bs/Bly is less than the different prob.
Su‘ﬂiﬂﬂd lﬂﬂ.ﬁ Ibsflﬂﬁ B'-l.'l ar ]m and 802 E:nis-giﬂns 10 ﬂ.m ﬂ.hﬂ“jﬁs Pﬂ' Figl.ll'e 15 Shm Ihe minimum :risk' at diﬂ‘mn[
Ibs/105 B or Jess The cost o f electricity for the optima! €hanee consiraints P.. 1t can be geen that the risk conld no
design configuration varies by more than g factorofiwo due g Minimized moch, Thig may be becauge (he decision variables
the performance and cost uncertginties, An 80% confidence in-  Selected are less Sensilive ko the risk. , _
A gives expected coss botwoen 52,5 and 70.0 millefkw,  These T art imeaded only 1o be llustrative of the new
Also there i g 5% prabability of ng feagible design able (o ™odeling capabililies now Possible with stochastic optimizg-
meet the emission constraings with the agsumeq uncertainties, G0N and stochastic programming. For realistic cage studies, ong
Figure 11 shows an example in which NO, emissions are I
U, which is (he Federal New Source Performance Standarg

1 ]
minimized subject to a constraint an the maximom eost of elec. ;
ll [
NSPS} for coal-firpd power plants. Thyg, reducing pracess
T T I
04 o5

iEns achieving between 0.2 and 0.3 pounds NO, /105 Biy,
[he mean valve of the probebilistic results show 4 minimum
VO, emission rate of 092 Ths /10° Bru for this cage. However,
igure 13 also shows 2 154, chance of excecding 0.6 Ibs/10¢

Mo % Brububfliy of Bxceeding Cpay LImhy

PP f | |
1

ricity {in this case, 65 mills/kWh), Teprésenting an assumed
il
fLceriainties or modifying process cenfiguration 1o reduce o “d !

PPper bound on economic ek, The stochastic programming
vel ﬂfﬁSk mﬂ}"b&mﬂlﬁd. £15 02 02 0.3 nas B T 11

. . Thance Conrerglnyg Probubdricy
Finally, Figures 12 and 13 iMlustrate the concent of rigk .
inimization. The risk can be defineg asprobability of exeeed. Figure 13: Risk Minimization

1=
0x5
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raay need to consider a iarger sample size or switch 1o more ef-
ficient sempling techniques such as deseribed by Kalagnianam
and Diwekar (1994},

CONCLUSIONS

This paper has pressnted new sysizms analysiz tpals and
methodotogics that can substandally improve the design and
analysis of environmental control technologics. By combining
ex:sung process simolators with the mathematieal methodolo-

gies presenied here (i.e., probabilistic modaling, oplitnization,

MINLF synthesis, and stochastic annealing) researchers now
can tackie a wide range of system performance and cost anal-
ysis not heretofore possible. Furthermore, this toolbox can be
used 1o insure that environmental issues are fully considered in
all phases of process engineering sctivity, ranging from synthe-
§1 to design to operations, These modeling tols also can be
exlended to a hast of other technology applicstions where pro-
cess design, cost minimization, risk analysis, environmental
compliance, and R&D prioritization remain important jssue.
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