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Process Synthesis under Uncertainty: A Penalty
Function Approach

Prosenjit . Chandhuci and Urmila M. THwekar
Dept, of Civil & Environmenta] Engineeting and Enginearing and Publie Policy,
Carpegie Mellon Unfversity, Pittsburgh, FA 13213

With the growing environmental concern, it Is necessary fo faprole process simula-
tion and develop design tools to account for environmental factors in the synthesis of
large-scale chemical processes. A major obstacle in tackiing this problem is uncertain-
ties fn some of the technical and economic parameters, which lead to wncertainties In
desiem, plant performance, and cost estimates. Further, & concepiue! process design
involves the idemtification of an optimal flowsheet strucuure from many altermatives
stituting the ‘superstructiere. " Synthesis and optimization of large-scole processes involt-
ing unceriainties often reqiire considerable computational effort, A nouvel algorithm pre-
sented here is based on simulated annealing for the process synthesis of large-seale
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flowshesis having severa! corfigurations and considers uncertainties in the process de- . 3men de

sign systematically. This new “stochastic anneating algorithm,” provides an efficlent
approach to stochastic synthesis problerns by Incorporating a penalty termt in the objec-

tive function and balances the trade-off between accuracy and efficiency buased on the IR

annenling temperature. It has been used to study a benchimark synthiesis problem in the
HDA process. Savings of up to 80% in CPL time has been achieved without significant
loss of selution precition with stochastic annealing, compared to sSmulated annealing
with a fixed sample size. It can be applied to anolyze efficiently any complex process
Fflowsheet and provide valuable insights info process faasibility based on optimal design,
plant performance, and uncertainty iasties.

Introduction

Computer-aided process design plays an important role in
the design of new processes and the analysis of existing proc-
egses. The desipn of new processes is, however, complicated
by technical and econowmnic uneertainties, which lead to on-
cortainties in the prediction of plant performance and overall
plant ecomemics. An example where such technieal and eco-
nomic uncertainties occur and are pot treated or character-
ized rigorously, i in the design of integrated environmental
conirol processes for advanced power systems (Diwekar ot
al,, 1993h}. Since the conceptual design of any chemical proc-
ess involves the identification of possible Aowsheet configura-
tions, design methods must also address the isues of process
synthesis under uncertainty, as it has impartant implications
on process viability, and other quality measures such as con-
troflability, safety, and environmental compliance.

Comrespondenes coneerming thic acicle shautd e addtearsd o U, M, Diwekng,
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Conventional simuslation models are based on a 5t::ad3.r-3tatq.'
deterministic framework and do not handle uncertainties in 8
systematic manner. The tnecessity to analyze uncertaintes 15
greater in the content of emetping processes, sinee for these
processes the availahle performance data are scant and the
toehnical and economic parameters are not well cstahlishﬂfi
A systematie framework to analyze uncertainties is & key Step
in this regard and promises to overcome some of the diffieul- -
ties encountered with deterministic simulators, Furthermors,
althongh design under uncertainty has roesived cnnsidarab_[!f-'_:
attention in the past in the chemical enginecting literatiT®
{Pistkopoulos and Grossmann, [988; Soavh and (rossmm A,
1900; Varvarezos et al., 1993; Ciric and Huchotte, 1953\
generalized framework for analyzing uncertainty system®
cally, however, has recently been developed around a chem
cal process simmuiatar (Diwekar and Rubin, 1891). T

Onc of the main goals in synthesis problems i to establiific
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“modologies for selecting optimal Aewsheet eonfigurations.
irpaches to process synthesis problems essentially fall vn-
brthe frrllerwing Areas:

_Thermodynamic approach {Linnhoff, 1981}
-Ewolutionary mothods (Wishida et al., 1981)
. Hierarchical approach, hased on intuition and enginesr-
ing judgment (Douglas, 1985)
Optimization approach bascd on mathematical pro-
. gramming techniques (Grossmann, 1985).

In’general, mathematical programming techmigues in proc-
7t aynihesis involves {a) formulation of a conceptual flow-
riat neorporating all the altemative process eonfigurations
erstructure) and (&) identification of an aptimal design
figuration hased on optimal structural topelogy and the
ptimal parameter-level scttings for a sysicm (0 meel speei-
od petformance and cost objectives (Grossmann, 19900

ce the superstmucture {s known, mized inteper nenlinear
‘#npramming (MTNLP) algnrithms can b uscd to solve the
i e prablem. These atgorithms arc bascd on the alter-
ng seqirence of nonlinear programs (NLPs) and mixed in-
per linear programs {MILPs). Over the yrars, significant
deances in MINLP algorithms have Icad to the development
f,-' quation-orientad software, such as APROS (Paules and
ndas, 1989), DICOPT++ (Kocis and Grossmann, 1989),
PROSYN (Kravanja and Grossmann, 1990), Thesc pack-
lhave some practical Hmitations, as it may be too labod-
tnis and cumbersomc to analyze complex chemical processes,
_1__5.&qucntiai—modular deterministic simulators, such as AS-
PEN/PRO-L, incorporate detafied process madels and have
Ahaen developed to simulale complex processes. Howewver, they
of possess any synthesis capability. A synthesis capability
porating MINLE eptimization techniques hes been de-
ped around the public version of ASPEN, bul evén then
Taeked the ability to synthesize proceases under uncertaingy
; mekar et al, 1992a), Optimization under uneertaimty es-
[ isentially falls inte two classes of probiems: (1) stochastic opti-
mization; (2} stochastic programming, In stochastic optimiza-
tor, at each optimization ileration, some probabilistic repre-

ized. On the other hand, stochastic programming imelves
e solutlon of a deterministic optimization for each sceoarn,
elding a probabilistic representation of aptimal solutions. A
efhodology {for stochrstic optimization and stochastic pro-
JEpramming capability built around & deterministic simalator
ex been outlined recently (Diwekar, 1094,

An alternative to the solution of the superstructore using
MINLP techniques fs simulated anncaling. The advantages of
Simulated annealing in chemical process syothesis applica-
tions are that it I8 nod a detivalive-based method and cen
handle large discomtinuities in the selution space.

~ . Simulated annealing, in recent yoars, has been successfutly
- ‘applied 1o the design of beat eachanger and pipcinc nct-
o | works (Dolan et gl, 1989) and in the scheduling of batch
Progesses (Ds et al., 19900, However, unltke MINLP, i bas
nok heep incorporated as a design mechanism in synthcosis
Problems, Forther, an aleorithm based on sinuleted pnneal-

nanm, E
1), 2 ' ME developed o handle uncertainties in r systematic and
mati: (Efiieiznt manner has not been applied to the study of large-

‘icale fAlowshects.
-This article therefore presents A new varjant of simutated
Annealing, which has been modified to handle uncertainties
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in the form of probabilistic distributions and can be extended
to process synthesis applications. Since stochastic analysis in-
¢reases computational time owing to the large number of
samples required to arrive al 8 more definitive probabilistic
value of the objective function, another goal of this algorithm
in to achieve the trade-off between pccuracy and officfency
based on the annealing lemperature. We have developed an
alporithm, relerred as “stochastic annealing,” that can sclect
the aptimal number of samples and obtain the desired opti-
mel sohation without significant loss of accuracy, This eo-
degver is promising in the context of large-scale Dowshects in
determining the optimal design configuration as well as hap-
dling uncertaintics in a manner thal is computationally effi-
clent, yet predicts probabilistic estimates of planl perform-
ance, design, and ceconomics accurarely.

Stochastic Modeling and Synthesis onder
Uncertainty

The goal of an optimization problem is to determine the
et of decision varinblas @ that optimize some aspect of the
deterministic mode]l represented by objective function Z,
subject {0 equality constraints A and inequelity constraints g.
A mathematical formuiation of the problem is given by

Optimize  Z=z{#,x) (1)
g
subject to
Rig,xi=0 ()
glaxi=<0 (3}

where & is a decision variable vector and 3 is a vector of
model parameaters.

In mony cases, the need for renlistic models necessitales an
uncertainty analysiz owing o uncerizintics associated with
same of the npul parameters in the model. A peneral ap-
proach to a wide variety of problems invelving uncertainties
ia Lo assign probability distributions to the various uncertpin
parameters. Henee, a pgencralized stochastic optimization
problem where the decision variables and uncertain prrame-
tors are scparable is as follows:

Optimize  Z= P [z(8,x )] {4}
f
subject to
Polhid z,ul]= &, ()
Pylgldxul] = ny, {6

where n i5 a veator of uncertain parameters and P repre-
sents a probahilistic funetion, The vector of uneettain param-
elers {u) are chosen based on the amount of information
availahle (Diwekar and Rubin, 1991). For an expected value
minimization of & function Z with & comulative probabiiity
distribution p, this resufts in:

EF=E(Z}=f]z dp.

Minimize {7
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For N, samples, the expected vaiue can be obtained by
sampling from the distribution:

aRLLF
E{Z}-Tml". (8]

On the other hand, if one secks to mindmize the varanee,
then the probabilistic functiona! case for varianee minimiza-
tion becomes:

Minimize o?=f3lz;- iV dp {3

T Mo z, — £

1
N1 {1

It is apperent from the previous equations that unlike a
deterministic optimization problem, a stochastic optimization
problem treats a probabilistie funerion of the ohjective fune-
tion and canstraints. In stochastic optimization, therefore, the
slochastic madeler nssigns the probabilistic distributions to
the input parameter i, then uses g sampling techinique to
generate the speeified number of samples (N,gp,) 80d passes
the sampled value of each parameter to the model. For each
ruode! run, the objective functivn and constrainis are col-
lected. The simulation is then ropeated for 4 new set of sam-
ples selected from the probability distributions. Finally, when
all the samples have pane through the cycle, the stochastic
madeler analyzes the output and finds the probabilistie fune-
tion of the abjeetive function and constraints, which is passed
an to the optimizer. Since at each optimization iteration stage,
ane needs to run the stochastic model with a large number af
samples to caloulate the probabilistic funetions, the compaka-
tional intensity in stochastic optimization is large.

There are many ways of sampling from probability distribu-
tions, of which the hest known and more commaondy used is
Monte Carlo sampling, In cmde Monte Carla samipling, a
value is drawn from a distcbution at random for each input
parameter. In most cases, the primary ebjective ts to produce
a more unifoem distribution of points in the paramster space;
then systematic or srezified sampling techniques hecome mare
appenling. In stratified sampling, the sampling spacc is seg-
mented into intervals and the input values are ebtained by
sampling separately from each intervel, instead of from the
entire distibution. Latin hypercube gampling {LFIS), which
tepresents one version of stratified sampling (lman and
Shortencarier, 1984 is used in our anakbysis,

impllzatian of Sample Size In SImufation
Experiments

Simulation runs involving wocertain parameters in the
model are computationally intensive due to the large number
of samples that need to be propegated through the medel.
One of the primary concerns in sinlation mms involving un-
certain parameters is therefore the sample size one needs to
chonse to obtain precissly an estimate {of a statistical param-
eier, such as the mean or the standard deéviation, without
wasting too mueh CPU time. Maonte Carlo techniques have
the advantage of estimating the precision of the estimated
parameters based on a particular sample size, This is becausc
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ability distribution of (hat variable. In most cases, the nom.
ber of sampling runs depends on the cost and offective of the - - 1 ‘

one can apply standard statistical tcehnigues to analyze the - 1T
outmut from a Monte Carlo tun, as the sampled values of |
cach owtput varinble is a “random” sample from a true proh- . vos
Pt
y

run, Furthermore, the pumber of runa iro depends upon the
type of application. For a comprehensive discussion on the :
number of semple Tume required to buikd refishle models, the | 1
rcader is referred to Morgan and Henrion (1950 o
Tn almost all stochastic optimization problems, the majer | i
hottieneck is the computational time for generating and evaj- - E
nating probabilistic functions of the objective fonction and | 2881
constraints. Fer a given number of samples {p)} of & random, {1~ E
variable (V). the estimate for the mean or expected value (§) [z E
and the unbiased estimator for standard deviation {s) canbe [ r
oheained from classic statistics (Milton and Arnold, 19900
The accuracy of the estimates for the Actual mean { 41) and
lhe actual standard deviation (e} is partienlacly important 1o
obtain realistic estimates of any performance or cconomic,
parameter, However, as stated earlier, this accuracy is der
pendent on the number of samples. The number of gamples . -
required for a given eccuracy in a stochastic optimization,
problem depends upon several Factors, such as the pe of |
unccrtainty and the point values of the decision varinbles
(Painton and Diwckar, 1993). The idea of interval estirmation ' -
in statistics enalles us to construet a confidence interval . |3
around the mean or standard deviation and allows 0s t0 make. [
inferences on the mean or standard deviation of a distribu- . 78
tion. It seems plausible, therefore, to use this ides of interval
estimation to sefect the number of samples to abtain more
accurate estimates of any statistical parameter without wasl
ing unnecessary CPU time. In our approach, we have used;
this notion of a confidence fnrerval to estimate the number of -
samples requited to obiain precise estimates of B statisticd
parametet, such as the mean ar the standard deviption.

Canfidence Interval and the Bandwldth

The sampling distribution of § depends on the underlying &
distribution of ¥, If ¥ is normally distributed, then § follows
a ¢ distobution and approacties a normal distribution 29-m
becomes larper. Forther, no matier what the cliseribubinn 'd
¥ might be, for large samples, the distribution § approachics,
a normal distribution with mean g and standard deviatist
o /m . This is a tesult of the central limit theorem, and.
pliles onc to represent the uncertainty in the estimated mean:
7. Since s i3 an unbiased cstimator for 7, one can eSHAE iy
the standard deviation of the sample mean. For Z, a randor
warfable with unit normal distribstion and ¢ the correspaiie:
ing deviation such that the range { - ¢, ¢) encloses & proti
bifity, the confidence interval for g, the mean of ¥ is ¥ —EL%
W ), 7+ cls/ym ). This, however ia not an accurate estial
it m s small, i

On the other hand, i one chooses to minimize the st
dard deviation (s) to arrive at a less "uncertain” expected
value of the mean of an oulput result, estimates of the MEE-
and Towet bounds of the standard deviation can be obtal
from the chi-square distribtion, The underlying assumgh
in these eatimates is that the sampling s performed f{?
normal digeribution.

Tr lugtrate how interval sstimation can be used 10
the sample size, consider a simple probabilistie functici
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Flgura 1, Maan and {g bounds as a functlon of the
number of samples for Monte Garlo runs.

iyl m oz ¥z, of two varfables x; [uniform (0.9, 1.1)] and x;
[normal (0.8, 1.21]. For a given mumber of samples, one can
- construct upper and lower bounds for a 95% confidence in-
‘terval around a parameter, which gives a measors of the pre-
Gision in the estimale For that paramneter. Figure 1 shows the

' E’ estimates of the mean for fx,, x,) vs. the number of sam-
L3

k- ples for crude Monte Carlo runs, Comparing this with Figure

: E 2, which shews the estimate of the mean of f{x,, z,) vs. the

.- -umber of samples, for Latin hypercube sampling, it can be

%. observed that Latin hypeseabe sampling regquires a fewer
i number of samples to obialn precise estmates of the mean.
i The tpper and lawer bounds (shown by the solid and broken
5
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Flgura 2. Mean and its bhounds as a function of the
number of samples for Latin Hyparcube sam-

pling.
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lines, respectively) for & 256 confidence interval for LHS n-
dicate that there is no significant change in the width of the
intezval afier 150 samples. This bound is truly an overesti-
mate far Latin hypercuhe sampling; nevertheless, it allows
one Lo perceive the number of semples required for Latin
hypereube sampling based on & confidence interval around
the mean. Similar results are obtained for the estumates of
the standard deviation. Fieure 3 indicates that a larpe num-
ber of samples are required 1o oblain precise estimates of the
standard destation for Monte Carlo mns compared to Latio
hypercube sampling (Figure 4). Again, althoogh the bounds
for the estimatc of the standard doviation is an overestimate
for Latin hypercube sampling, they shew a stmilar trend, ag
in the case of the estimate of the mean, namely, that the
width of the confidence intcrval does not shew a significant
change ahowe a certain number of samples (in this case, 230
This leads us to helieve that one can use the confidence in-
terval to select the number of samples in simulation runs,

It seems clear from the preceding discussion that [or an
especially small number of samples, the interval estimation
for the mean or the standard deviation digcussed before, is
an apprepamation. Currently, a novel approach based on the
concept of fractal dimemsioms to cstimate the error band-
width acourately is being investipated {Diwekar, 1994),

Combinatorial Optimization and Synthesis under
Uncertainty

Process mymthesis may invelve a large number of diserete
configurations of a given flowshaet. Such problems mvalving
uncertninties, coupied with combinatot{al optimization cap
make the solutinn space hiphly nonlinear and discontinuous
and rometimes impessible for a search algorithm to converge
on the optimum. An example of such a system that can canse
such & “combinatorizl explosion”is & simple model of a Bray-
ion cycte power plant {Paintow and Diwekar, 1994), This sys-

0 Sandard Deviation
= Lipper Bound
n=== | pwar Baund

0,072 -

1 1 T T
1o 200 aon aba 5pQ

Number &f sampies

Standard devlatfon and its bounds as a func-
tion af the number of samples for Monte Carlo
runs.

Figure 3.
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Figure 4. Standard deviation and itz bounds as a func-
tlon of the number of samplea for Latin Hypet-
cube sampiing.

tem has been shown o yicld a solution space comprising 10.2
million combinations. o the past decade, simulated anneal-
ing s heen known to solve such comhbinatorial optimizaticn
problems and has been applied in widely differsnt ficlds
{Rutenbar, 19890, However, to the best of our knowledge, the
problem of a systematic treatment of uncertainty vsing simu-
lated annealing has never heen addressed in the engineering
literature. In the subsequent sections, we present the stan-
dard simulated annealing algorithm and its new variant, the
stochastic annealing algorithm, which can treat a probabilis-
te abjective function systemntically as well as seleet the opti-
mum number of samples based an the ercor handwidth.

Stmulated annealing algorithm

Simulated annesking fs a heuristic approach for solving
combinatorial aptimization prablems involving many vati-
ables. In recent years, simulated annealing has heen cm-
ployed in many diverse areas, such 88 very-large-scale inle-
grated (VLSI} chip floorplanning, traveling salesman prob-
lem, image processing, snd physical design of compuiers, ta
name z few. It is a probabilistic method based on ideas fram
statistical mechanics (Kitkpatrick et al, 1933), which deals
with the behavior of systems having many degrees of freedom
in thermal equilibeium at finite temperatures, Systems invohv-
ing liquid metals freeze and erystallize or conl and anneal, At
high temperatares, the melecules of liquid metals exhibit
grealer therma! mobility, 1 such & system is conled slewly
{i.c., mmgaled), the atoms orfent themselves to form a pure
crywtal, thug attaining the lowest enctgy state of the system.
On the other hand, if the liquid metal Is cooled quickly {ie.,
quenched), il does not reach this minimum enetgy state, bul
rathet attains a polycrystalline or armorphons state possessing
high energy,

The behavior of atoms in the presence of a heat bath i
poverned by the temperature, At each temperafure, the sys-
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tem is allowed (o attain thermai equilibrium. The probability ;. variat

{Pr} of such a system of being in a stale with cnergy Eis | sime

given by the Bolizmann distribution: " »F
" avari

Yo exp| o (
PrE Z,m(f{,:,T)’ 113

where K, is the Boltzmann's comstant (1380631075 IAG ¢

and 1/Z, is a normalization factor (Collins et al, JLEI | AU |

simulated annealing, the objeclive function (vsually costh is |- yarial

analogous to the encrey of the spstem. The aith of such a S

problem then is to minimize the cost/energy denoted by f(X), . chany

where ¥ =(X,, X3, ... . Xy} represents a particular config-
uration of the system. To obscree the hehavior of the system,
the systemn is perturbed from it present state to another state.,
Theae individual perturbations are referred to as neighbor-
hond moves. Tt must be noted, however, that simutated an-
nealing vequires that these moves be Markov chains, since it
is only in such cases thar simulated annealing is guarenteed
to atain ghobal optitmum, asymptotically (van Laarhoven and
Aarts, 19870

The behavior of a system subject to Fuch a neighborhood
move is determined from an obscrvation of the objectfve
[nctios. If the configuration results in a lowst energy state, - -
the mowe is accepted, Floweser, if the mave results o a bigher, - - B
energy state, the menve is still accopted according to Metropa: :
lis criteria [pceepicd with a probability expl(- AEMR, T, 2
Thus, a large percentage of uphill maves are accepted at high:
temperaturcs. The system is allowed (o reach thermal equi-
Ibrfum at cach temmeratute, which is then lowered, and the
annedling process continues until the system reaches 2. oot
tain “‘freezing” lemperaturs,

In mixed-discrete optimization, hoth diserete and contin
ous variables are invoived; hence, such problems are comb
natorial in nature. Such a solution space is much more o
plicated (han that of a nenlincar optimization problem in-
volving continuous variables, These problems are character
ired as having multiple local minima in the solution spat
hiost existing algorithms on nonlinear oplimization are desel=
oped to enhance the efficiency of the scarch procedurs. For
nonconvex objective function or constraints, thess almor
are unable to cvercome local optima, Hiwever, gince S
lated annealing offers the alteroative of 4 tandom U
mave, the system can “jump out” of 2 locat minimur_n'lU“'f.“'d_'
a global minitmum. Simulated annealing thus combings StAt-
dard iterative improvement and randam uphill jumps to:Et:
sure that the system is not confined to a focal mimimut: %
treatise on the choice af control parameters essential £ et
an annealing schedule (commonly calted cooling schedile
detailed in van Laathoven and Aarts (1987). )

Neigkhorhood mopes in simudated arealing

In sieulated anncaling, the changes in the configurat
the system is realized through a neighborhood meve from
point to another. For continucns variables, 2 ncighborlos
move.is analogous to “a random walk with a bias." BaseC g
thearctical results, a formulation of maves for the diffe %
class of variables can be devised as (Zhang and Wank 1954,

» For integer variables, a move is defined 25 3 chail :




yatiable from an integer value to another with g randem stcp

T8
s For zoro-ane variables, a meve is defined as a change of

7 yariable from Zero to onc or wice versid:

it e =0
ifx'=].

r 1"
Xx; = ﬂ1

« For diserete variables, a move is defined as n change of 2

- yarjable from one discrete value o another,

+ For continuons variables, a move is defined as 2 random

" ¢hange of one variable:

Xy =x;+[2 ¥ rand (0,1 - 11,

¢ x;=valoe of the deciston variabie prioe (o the move
zie=value of the decision variable after the meve

L= StED size of the cantinuous variable

»  For continoous vatiables, there are othor meve sequences,
detajled treatise of which is presented clsewhere (Vander-
ilt and Lonie, 1084; Bohavehevslor of al., 1986). Further, it

must be realized that for comtinuous variables, the step size
f a neighborhood move should be small when the tempera-

Cture is near "freezing” to obtain accurate solutions. Further,

in multivariable prohlems, the acighborhood move can be re-
lized in twa ways: (1} moving gne veriable at a time (or-

;.rhagunal mavel, ar (2) moving pll voriables stmulaneously
{eombined). In our approach, both the strategies have been

mployed in order to arrive at the final solution. Based an

7 observations, erthogonal moves are better for constrained
- . optimization problems, while the combined meove approach is

* AIChE Iournel

better for unconsiraincd optirization problems,

" Penalty Function Approach

Tn o previous section, the importance of the contidence in-
terval in determinitg the sample size was presenied. In this

. section, we lnttoduce the idea of penalty, which takes ino
ageount the eonfidence interval {n the synthesis under uneer-

“tainty af large-scale. combinatorial optitization problems.
_'This leads us to Formulate the now variant of the simalated

" anmegling algorithim, the stochastic annealing sigerithm,

In stochastic anncaling, the cooling schedule is vsed o de-
tide the weight on the penalty term for imprecision in the

". probabilistic objective functien (by “stochastic annealing” we
i refer to the asnealing of a probability or stochestic function,
. 1= 1t must be realized that the simulated anneeling algorithm is

;. A stochestic Algorithm inherentiy, since the moves are defer-
. |- mined probabilistically. For our purposes, however, we will

| tefer 1o the annecaling of & deterministic objective function
|, simply as simulated anneating}. The choice of a penalty term,
. on the pther hand, must depend om the error handwidth of

the function that is optimized, and must incorporate the ef-

- fect of the number of sampics. For the expected value as an
* ohjeetive function, the penalty term depends on the errot
- bandwidth 2s/yes . In process synthesis, there are a few cases
- in which one is interested in finding the decision variakles for
- Whicl 1he uncertainty i minimum. This s rcalizable in ote
- Inrm by minimizing the standard deviation of the expected

March 1996

[unction. Estimates of the lower and upper bounds of the
standard deviation are abtained from the chi-sguare { ¥ dis-
ttibution, which [or f random sample rom & normal distribo-
tion with mean p and standard devialinn & is given by

{m=1Es2 frm =1}
N T and T
Xran Xi-iom

respectively. The penalty term in this case is based on half
the differenes between the upper and lower bound of the
standard deviation.

The new objective funetion in stochastic annealing, thera-
foore, consists af a probabilistic objective veiue and the penalty
function, which is represented for the mean (Eg. 12) and the
standard deviation (Eg. 13} as follows:

E{cost) Eﬁ”%+ﬁj s (12)
LECOSL)Y = I
Nunmp \'W:ump
and
[EN - _ 332 T _ z
Efmst) _ Ef _“{"M:Af z} + b{:.} |: hsnmp 1}5
1} N, amp 1 .2 X Iz— (@)
~ ':"!\EIBTHP - I}ITZ B {13}

In the preceding cquations, the ficst term represents the

real objective function and all other terms following the first
term sipnify the penalty function,
. The weighting function A{r} can be expressed in terms of
the temperature levels. At high temperatoras, the sample size
van he small, since the alporithm is explering the funcltional
topology or the configuration space o identify regions of op-
tima. As the system pets cooler, the algorithm searches far
the global optimun; consequently, it is necessary to take mare
samples to get more accurate and realistic nhjectives costs.
Thus, Pr) increases as the 1emperature decreases. RBased on
this observation, an cxponential function for H{t} can be de-
vised As

B,
'E':"'r's

hiey= {14

where &, is small (e, 0001, & 5 a constant that governs
the rate of increase, and 7 is the corrent temperature level

Stochastic Annealing Algorithm: A Variant of the
Simulated Annealing Algorithm

The stochastic annealing alperithm minimizes the CFLU
time by halancing the trade-off hetween emnputational effi-
cicacy and solution accuracy by the introduction of a penalty
term in the objective function, This is necessary, since at high
temporatute fhe algorithm is mainly exploring the solution
space and does nol require precise estimates of any probe-
bilistic funeton, The algorithm must seleet a large number of
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samples, a5 the solutian is near the optimum. The weight of
the penalty tern, as mentioned before, i governed by B0,
and is based on the annealing tomperature. Based on these
ideas, the stochastic annealing algorithm is as fllows:
1. Tnitialize variables: Ty Trreorer 2ccept and reject lim-
its, initial configuration 8.
2 TE{T > Tppeee) then perioem the fallowing loop (a-ht N
(number of moves at & given temperaiure) Limes.
fa) Generate a2 move §* from the current eonliguration
§ as follows:
i Sclect the number of samples, M,,,, by a random
movE.
If rand(D, 1= 1.5 then

wmp

Namp = M, + 5% rand{0,1)

otherwise,

N — 5% rand(0,1}

samp=N

s

ii. Select the decision variables {zero-one, integer, dis-
crete and continuous varjahles}.
(b} Generate N,,m, samples of the uncertain parame-
tets,
() Perform the fallowing loop [e{i-c(iD] Ny, tmes.
i. Run the model.
ii. calvulate the objective fimetion cost ().
{d) Evaluate the expected vaize Efcost($7] and s
[cost{5*Y] of the cost Function, :
{2} Cencrate the weighting function bt} =f, &'
(0 Calenlate Lhe modified objective function:

Obj(8") = Elcost(§)] + Hlr)

g
o1
M 15— ; S'T
GW(SJJ=/EJ refeast{ 5} — Elcost{ 8]}
Nown
143, (M = 1357 { Ny — 1042
= — = ~Vv— .
p Xl-tel

vii. Let & =Ohj( 51— ObLS}
viii. For a minimization problem, if & = () then accept
the move. Set §=05" clse if (A =0), then
accept with a probability cxp (— 4/T).
8 I T Tioeme 52t T =aT and return to 2.
4, Stop,

Example Problem

The salient features of the stochastic annerling algovithm
are best understood throuph a simple example imvolving inte-
ger and continuous variables. Considet a simple function:

cost = (a1 -3¢+ fu;y;—3]=+2.ﬂ{x} -x3}1+{x1 -1,
{15}

T48. Blarch 106

where
8, J; ™ UNCETtAIn pRTATEtErs
¥, ¥a= Integer vatiables
¥y x,= eoptinuous variahles.

The uncertain parameter #, was abtained fram a wniform
distribution [oniform (0.9, 1.13] while 1, was obtained from &
notmal distribution [normal (0.8, 1.23] using Latin hypercube
sampling. The bounds for the integer and continuous vari-
ahles ars ag follows:

l=y =4
l=yp,=5
O=x,=6
02x, 25

The problem can be stated BS
Minimize Efenst) or Minimize s{cost),

sukyect to

1=py=4d
lsy, =5
D=x;=6
hex, =5,

From ohservations, the minimuom of the cost function i
zero and occurs when ¥, — v, approximately equals 3, = &y
=1, and the average value of the dneertain parBmerers
and kg are st 10 unity,

In Fgurs 5, the objective function [in this case Efcostl] i

potted agninst the annealing tempernmure. The objectiver
function, E (cost), after cvery “move” was computed subject
to the given uncertainties, using 100 sarples and no penalty
was imposed on the aumber of samples, On the ather hand;.
Figure 6 shows the resuhs of the run using the stochastic
annealing algorithm, which incorporates the penalty fometierr-.
approach. The optimum reached in both cases was pasentially:
the same, hut the stochastic annealing algorithm took on. af:
average 32 samples per temperature level to prrive at the:
minimunl. A similag vesubt was obsarvad when we considered!

the problem of minimizing the standard deviation. Figure 23

shows the abjective function, s(eoat), va. the annealing tem*
perature for 1,000 samples using the simutated annealing: 3f:
gorithm. In comirast, the stochastic annealing algorithm:se
lected on an average 89 samples per temperature level to 8
rive at the same minimum (Figure £). The results are sunim
rized in Table 1.

Tt is easily ohderved that the stochastic aumealing algorith

pscs less CPU time and finds the optimum using A lews i

number of samples. Tt is envisaged that the savingd in. the!
CPLI time can he really significant in the analysis of lnfp
flowsheats. The stachastie Annealing algorithm can enbadee:
the design capability in process synthesis problems, ﬂﬂ';‘thﬂﬂj
can save computational time without sacroificing the precd
of the aptimal solution, :

The stochastic annealing algorithm sceks to minim
given objective subfect ta the vncertainties by allowing.
trade-off botween accuracy and computational efficiency:

Yol. 42, Na. 3




F T

TS

=m
t ¥ L0
.00 1.l 18518 1y 1.boE el
iy Pty

Figure 5. Objective function, E{cost} vs. annealing tam-
perature for fixed number {100) of samples.

trade-off between accuracy and computational efficiency. This
trade-off is hetter obscrved from Figure 9, which shows the
mumber of samples and the penalty function [as a percentage
of the abjestive function, in this case Eleost)] against the an-
nealing temperature. Figure 10 shows the same for the stan-
dard deviation. Initially, the temperatnre T is high, and the
algorithm is exploring the comfipuration space or the [ute-
tional topolagy, The teom, A{th= &, /&' in the penalty term is
small, as ¢ i3 small; ot since the annealing bemns with only a
few samples, the penalty is high. This can increase the overall
ohjective function. Thus, alhough it mey seem thal uphill
moves are discouraged, the bigh temperalore in the initial
phase of annealing allows few uphill moves. Conscguently, if
uphill meves are not undertaken, the number of samples does
not change and the probability function is evainated using
few samples. As the system amnedls, T decrenses, and as &
conscquence, B(t) increases, Bt is ohserved thal the cfieet of
the weighted tern, B{r), increnses the effect of the penalty
function on the overall objective function. At low tempera-
tures, the moves are mostly downhill; a5 a resulr, the algo-
tithm 1ends to accept more samples ta compute the objective
funetion accuraiely. Finally, when the temperature is close 1o

(B0 ] L.BeE=EY LY. 1 1BREAc 1 1mEH

Al s

Figure 6. Objective function, E{cast) vs. annealing tem-
perature for stochastlc annealing which se-
iacts the number of samples,
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Figure 7, Objective function, s(cost) va. annealing tem-
perature for fixed number {1,000} of samples.

“freezing,™ all the mowves are essentially downhill, and the
weighted 1crm docs not allew the number of samples 1o in-
crease indefinitely. This trade-off between accuracy and effi-
eiency is the significant aspeet of the algorthm, and allows
the selection of an aptimum number of samples, without loss
of precision in the computation of the objective function.

HDA Process

The stochastic annealing algorithm has been used to syn-
thesize a henchmark precess in chemical engineering—the
HDA (hydrodealkvlation} process. For this purpose, a syn-
thesis capability has been built around the pubiic version of
the ASPEN chemical process simuiator. The details of this
implementation in ASFEN are ciaborated elsewhers
{Chaudhuri and Diwckar, 1995}, The HDA Process has boen
extensivoly smdied by Douglas, starting from a hierarchical
approach o the design problem {(Figure 11). The problem we
propose to solve is the selection of the flowshest and some of
the operating conditions that maximize profit. Ao, we will
assumne that some of (he cost parameters are uncorlain and
&rt repregenled As probability distributions. In order to illus-

A0

0 8 .1} Ta L1} ap 40 L1} zn
Ay BprafaitioTy

Figure a, Objoctive function, s{cost) ve. annealing tem-
perature for stochastic anneating which se-
lects the numbaer of samples.
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Table 1. Resnlis far the Example Problem®

Samp. /
Temp. )
Funetion Alpprithm Level ¥1 ¥ xl x2 Optitr Leeia CPLI Time {g) =
Exp. val. Sim. Ann, 100 3 1 1.000 1.0002 0067 5326
Stach. Ann. iy 3 3 1.0007 1.0008 0.068 434 .. Hmye
Std. Dev. Sim. Ann. 1,10 3 3 L0721 153046 Q.08 114,364.7
Stoch. Anm, BY 3 E) 107627 193536 n.os9 nLA41.8

*The CPUT time docs not inclode the sampling me. However, the total sampling time abserved was much [ess compared 40 the sxecntion tme of e
algarichms. Tn reality, the snmpling (lme is vsually a small percentape of the CFU time shargod in the synihesis of lacge Aowshects, All computationg

ware perfirmed on VA0,

trate the computational efficiency achicved by vsing the
stochastic annealing algarithm, which aotomatically selects
the optimum tumber of samples, the process fAowsheat was
alsn run using simulated anocaling with fived sample size.

Provess description

The pertinent reactions of the HDA process are
toluene + hydrogen = benzene 4 methane.
In addition to this desired renction, an undesired rcaction:
Brenzene = diphenyl + Dydrogen

alsa oocurs, These homogencous gas-phase reactions ocour in
the range of 894 K and 974 K. At lower temperatures, the
reaction of toluene to produce henzene is too slow, while at
high temperature substantial hydrocracking oecurs. The pres-
sure is mmaintained at 3.45 MPa in the reactor. Alsn, a molar
ratio af at lesst 5:1 hydrogen to aromatics is maintained o
prevent eoking, and the reactor effluents must ke gquenched
to 894 K to prevent coking in the heat-ezehanger following
the reactor.

The raw tydrozen stream hag a purity of 93% (the rest is
methane) and {s mixed with a fresh inlet stream of toluene,
recycled hydrogen, and toluene streams. These feed streams
must be heated befoie being fed to the rerctor. The reaction
is exothermic and can be carried out in cither an adipbatic
reactor {¥1 =1} or an isothermal reactor (2 = 1), The reac-
tor effuent contains unreacted hydrogen, toluens, product
benzene, and the undesired product methanc and diphenyl,
which i3 then quenched. The guenched stream is further
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Figure 9, Effect of the number of samples on the penalty
term for the expected valua, Elcost) for
stochastle annealing.
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cogled to condenss the aromatics and separate the nononn.
densables {methane and hydrogen) in a flash separator, '
To prevent the buildup of methane in the system, the v
por siream from the [ash separator {5 purged; the remaimder
cantaiming valuable bydrogen is recycled. A portion of thie,
Yiquid stream fromm the flash scparator is wsed to quench the
reactor product stream, and the rest s sant to the lguid sep
artation system. Since not all of the hydrogen and methane =]
can he separated from the aromatics in the fash unit, mos i
of it 18 removed in a distillation (or stabitlzingd column (33
L) or 2 flash separarar {yd = 1} operating at a lower pre
thtan the previgus flash unit. The liquid siream contains &
gentinlly benzene, toluene, and diphenyl, which are separaté
it o sequence of distillation columns. The flash eolumn 3
rates henzene from toluene and diphenyl, while the seeod
column separdtes tolnene fram undesired dipherryl. i
The objective function is o maximize the anmualized profi;:
The cost model s represented by lineer fived-charge sikis:
and the data are given in Table 2, which also shows the'y
certainties associated with some of the cost factors,
The mixcd-discrete aptimization prablem conteins fou
nary (0-1] variables and six continuous variables: furn 0
temperaturs, femperature of the isothermal reactor, comve
siem in the reactors, molar flow rate of the hydrogen:
talucnie streams, and seven constraints. The optimal des
configuration is shown in Figure 12, The resulls (Table'3iine;
dicate that stochastic annealing is able to attain the sarmé 4
timal design confipuration obtained using simulated ari'n_
ing with a fixed sample size, but by stochastic annealing @
rithm achieved 80% savings in CPUI time and eonscquent]
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Figure 10. Effect of the number of samples CN:na
ponalty term for the standard deviat!
s(coet) for atochastic anneallng.



M

[
i i
x| | [

AQIADATIC AMACTON

mas|]

. 'fiﬁt’lre 11. Superstructure of the HDA Process (Doug-
fas, 1988),

The stochastic anncaling atgorithm 15 desipned to optimize
ohjective function, which is an estimate of any statistica)
rameter, such as the expectad value or the standard devia-
n of any output parameter. We hove modilied the stan-
ard simmlated annealing algorithm 1o choose oot only the
cision variables, both discrete and continuons, but also the
nomber of samples. The aumber of samples is [ess when the
jfemperature is high and the algorithm is exploring the cotire
nfiguration space. When the system is close (o “freczing,™
/‘_Ehp aigorithm allows for an increased number of samples, but
Al the same time does nol &llenw the selection of “too many”
samples. This is actually incorporated in the algorithn as a
enalty term, Which uses the confidence interval or the

Figure 12. Cpiimal design econflguration for the HDA
Pracess.

Bounds {or the objective function to enable the selection of
the nnmber of samples, and the penalty term is sweighted,
based on the annealing temperatuie. The stochastic anneal-
ing alporithm has been applied to the smthesis of 5 bench-
mark chermical process—the hydrodeallylation of 1oluene o
produce benzene, which is frequently referred 10 in the liter-
stute. Both simulated anncaling with fived sample size and
stochastic annealing were used to analyze the fiowsheet. The
stochastic annealing has been shown to find the optimal fow-
sheet eonfipuration, with 30% savings in CPU time. This new,
innervative symthesis tool therefore holds-greal promisc i the
syntheris of large-sesle complex chemical processes under
nncertainty.
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Table 2. Cosi Diata for DA Prohiom

Feadstock or pdtby-pdt, Comst Unecrtainty
Mydtopen (85% H,, 5% CH,) §2.50/ koot normal (0.6, 1.4)
Taluene (100% talucne) 8140 triangular (L6, 1.4)
Benzene [ = %) S19.90kmol normal §0.7, 1,3}
Diphenyl 1184, kil lognermal {0.6, 1.13
“Hydrogen purge (heet val.) FLOE kmol
Methane purge heat val) 1337 kmal
Lhilities Cost
Electriciry W h
Henting (stedm) SB010° kT
solE Crnling {water) 0,740 k7
S Fuel 54.010% KT
" Investment costs, S10° pr=! Fixedl-rhargs coists Uncertainty Lin. cooff,
Compreassor $£7.155 normal (38, 1.2 0,815 bhp (W)
Stabilizing col. £1.136 uniform (0.6, 1.4) (.375 % Wo. of trays
Benzens col, 5163 — 1585 %Mo, of trays
Toluene col. EX AL — 1.12 % Ma. of trays
Futnaes §6.20 — 1,172 duty (10" kIAT)
Adiab, reactor 743 - 1.257 vl £
Tain. tRACIO $02.875 — L571 % val ()
mal | L ATCHE Journat March 1996 Vol. 42, No. 3 751




Tohle 3. Resilis for the HDA Problem

Sim. Annealing Stoch.
Decision Varablcs {Sample Size Fizad)  Annealing
rl 1 1
el H ]
i 1] a
rd 1 I
Convarsian (403 {605
Reactar temp. RA3SE 256.9 K
TFarnace Lamp. BILOK L
Mular flow rake {hydrogen feed) 25244 kmaol/h 25262 kmolh
Muolar flow rate {toluene feed) 12684 kranl/h 12731 kmelsh
CP1IT tima TA,000 3 145165
Moaximized Profit, 34t > 10° 6.1 529, 7
Motation

E =energy of o state

EfZ)} = expectad valne of the objective function
¥, =a parkienlar abservation
Z, =reciprocal of the asemalization factor
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