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The concept of robust design involves identification of design settings that make the

product performance less sensitive 1o the effects of seasonal and envirommental rarig-

tions. This concept is discussed i this article in the context of batch distillation cohumn

desigrr with feed stock varigtions, and internal and external nncertaintios, Stochastic
optimization methods provide a genera approach to robust/parameter design ar com-
pared to conventional technigues, However, the computational burden of these ap-
proaches can be extreme and depends on the sample size used for characterizing the

parareetric variations and uncertainties. A novel sampling techmigue iv presented that

generates and inveris the Hammersley poiis (an opritngl design for placing n points
whiformly on a k-dimensional cube) to provide a representative sample for multivariase
probability distributions. The exzmpie of robust bateh-distitlation coliomn desin ilis-
trates that the new sempling technique offers significant computational sauings and

better accniracy.

Introduction

Rotmst /parameter design is an offline quality control
methad popularized by (he Tapanese quality expers .
Taguchi, for designing products and mamuiacturing processes
that are robust in the face of uncontrallable variations {Eend-
ell et al., 1090, At the design stage, the goal of parameter
design 2 to identify desimn settings that make the product
pedformance [ess sensitive 1o the effects of matufactuting and
eivironimental variations, and deterioratian,

In parameter design, Taguchi's stated ohjective fs 1o find
seltings of the product or provess design parameters that
mifimize an average quadratic Jass function, defined as the
average standard deviation of the response from a targel
veloe, In otder to select the settings of the design parame-
ters, a set of measures called signal-to-noise ratio (SN needs
to be maximized. Taguchi wses orthogonal-array desiprs to
arrive at the optimal settings, This approach is limited since
it requires that the mean and varance of the outpui variable
are nol coupled (Hunter, 1983; Kackar, 1983; Nair, 19923, In
order ta evaluate whether this assumpiion holds, an a4 prior
functional relationship betwesn the input And output {s re-
quived, but is seldom available far large and complex real-
world problems. An altemative is tn treat the design vari-
ables end the nefsc factors in 4 single matrix and deveiop the
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respanse direetly ns a function of the conitrol and noise fae-
tors and then optimize the loss fanctions via these approxi-
mations (Easterling, 1989; Waelch et al., 189 Yu et al., 1991%
Clearly, the reliability of this optimization depends on the
accuracy of the approdimating models. Since many of the pa.
rameter design experiments are now run using computer
madels, hc computational cost of running the simulator of-
ten dictates the size of the samples used for constructing ihe
tesponse surfaces, Latin Hyperenbe (McKay et al,, 1979) de-
Signs are now commonly wsed - for constructing response sir-
fare models since they require a smaller number of samplcs
as compared o the orthogonal array designs (Welch and
Sacks, 1991). However, if the factor tanges of the controls
and noisc are large, the input—output relationships are con-
plex and larger samples are required to pet reliable approxi-
taations {Currin et al,, 1991 Sacks et al,, 198%; Weich ot al.,
1992}, Therefore the availability of on efffcient sampling
technique that provides reliable estimates of the porformance
statistics using a reasonably small sample size les at the heart
of these approaches.

The most general approach to the rohusgt or paramater de-
gign problem fs to couple an nptimizer ditectly wilth the com-
potet-simulation model wsing stochastic descriptions of the
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noise faclors (Boudripa, 1990; DMwekar and Rubin, 1994),
Such an approach is more reliable than using a TESPHINGE Sir-
face mndel; however, it is also computationally rmare expen-
sive. The vse of such a direct methed is warranted in process
mpplications wlere input-output relations are highly nonlin-
ear and rugged {Diwekar and Rubin, 1991}, Furthcrmore, in
process design, minimizing just the varance (in the form of a
lors functinn) can lead to severe overdesigns, therefore, an
gconomic funetion needs to be included along with the loss
function in the robust design evaluations, and operating or
control variables (such as reflux tatio) should be considered
in the optimal decisions to compensate for the varialions. The
siochastic optimization problem invelves the evahtation of an
aggregate measure {uscd as a performance slatistic) derived
from & mullivariate probability distribution. For nonlinear
models, this is dane numerically using & representative sam-
ple from the multivariate space and has to be repeated at
each optimization iteration, as showa in Figure 1, where the
inside loop is an ilerative stochastic model, Gne can easily
envisinn the computetional intensity of the stochastic opti-
mization prablem presented in the Figure 1, Thercfore, an
efficient sampling scheme that reduees the number of sam-
ples required for each iteration can significantly improve the
computational efficacy of the stochastic optimization proce-
dure.

In this article, we present a new and elficicnt sampling
technique using the shifted Hammersley poiits far uniformly
sampling a k-dimensional wnit hypercube, This now sampling
technigue requires far fewer samples, as compared to other
techniques, to approximatc the mean and vadance of distri-
butinng derived by propagating a reprosentative sample or
the inputs) over nonlinear functions, For the mobust design
preblem posed in torms of stochastic optimization, the use of
this efficient samipling technique can significantly alieviate the
comprtational burden.

Chemical processes are subject to a high degrec of uncer-
tainties. Stochastic variphilities or wncertafniics in barch
chemical processes typically anise from vagations in the ini-
tizl conditions (e.g., feed-stock composition and temperatmre)
and operating procedures, as well as from couipment failures
and other unexpectad reductions in resoures availahiliy, and
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Figure 1. Stechastic optimization framework,
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neise i measurements used for monitoring and control pur-
poses. For units such as batch crystallizers (Mullin, 1993) the
uneertainties arc inherent in crystal size distributions, and ro-
lated property predictions. Furthermorc, most indusimal
btch processes are operated through opeo-loop applications
of an off-line optimized input profile, such as fecd ar lemper-
fture, commonly known as optimal control profiles, These
profiles even if reoptimized wsing on-line measurements of-
ten contain nonnegligiblc uncertainties due to the system state
being inferred from indirect, so-calfed modcl-hased measure-
ments, which can be subject to hoth stochastic measurement
noise and stuetural measurement-model mismatch
(Terwiesch, 1995). The need to take these unecrtainlics info
consitleration [n the design and planning stage is weil recop-
nized (Reklaitis et al, 198% Coti and Machhielto, 1985;
Watzdarf 21 al., 1993; Mignon et al,, 1995; Tsai and Chang,
19%; Terapetriton and Pistikopoulos, 1996), This new sam-
pling tecimique provides an efficicnt and generalized ap-
proach {or handling uncertaintics in batch process design,
optimization, scheduling and planning, We iliustratz this in
the comiext of robust design of a batch distillation column
that is subject to feedstock variations, modeling uncertain-
ties, and measurement errors and TEpOTT Computational sav-
ings of up to e factor of 10,

In this article the conventional sampiing lechniques used
in. the literature are compared with the new sampling tech-
nique based on Hammersley points using the results of a large
set of numerical experiments. The concept of rabust desimn
of bateh distillation eolumn is prescnied, as well a5 the accy-
racy and computational efficiency gained by the use of this
new sampiing technique in solving the robust design prob-
lems. :

Monte-Carle and Latin-Hypercube Sampling Tech-
nigues -

Perhaps one of the best known methods of satnpling a
prohability distritmtion is the Monte-Carlo sampling tech-
nigque, which is based on the use of a pseudorandom number
Eenerator 1o approximate a wniform distribution, 2400, 1) with
# rampies. The specific values for each fnput variables are
selected by inverting the o samples over the cumulative dig.
tribution function. A Monte-Carlo sample has the property
that suceessive points are independant. However, in maost fpr-
plications, the actual relationship between successive pofals
in a sample has no physical significance, hence the indeper-
dence/randomness of 2 sample for approximating a uniform
disiribution is not critical (Knuth, 1973}, Moreover, the crror
of approximating a distribulion by a finite sample depends on
the equidistribution properties of the sample wsed for G{0, 1)
rather than its randomness. Onee it s apparent thart the oni
formity properties sre central to the design of sampling tech-
nigues, constrained or stratified sempling hacomes appealing
(Morgan and Henrion, 1990), :

Latin hypercube sampling (LES) it one form of steatified
sempling that can yield more precise cstimates of the distri-
butica function (Iman and Shortencarier, 1984).The range of
gach u; is divided inlo nonoverlepping intervals of equal
probability, One value from each interval is stlected at ran-
tlom with respest o the probability density in the interval.
The n values thus obtained for »; are paired in a random
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manner with the = values of X, and these A pairs are com-
bined with » vriues of X and 50 on to form n i-tuplets. The
random pairing is based oo 2 peeudorandom number penera-
tar. The main shortcoming with this stratification scheme is
that it is one-dimensfonal and does not pravide good nni-
foremity properties on a k-dimensional it Ivpercube, Until
recently, the only known design for unilormity on an d-di-
mensional hypercube was & uniform prid (Papageariou and
Wasilkowski, 1990% However, the uniform prid regquires cx-
prmential sample points in the number of variablea [for good
equidistribution properties. Recently, Wizniakewski (1991)
showed that the shifted Hammersley points provide the loca-
tion for # k-dimensional sample points on a unit byparcule
50 a5 to minimize the discrepancy from a oniform grid, The
next section desetibes the new sampling technigue, which is
based on generating the Hammersley points, & varfant of the
sequence vsed by Wozniakowski,

New Sampling Technlque

Since most of the stochastic optimization problems invalve
integrals of some probabilistic function, consider the approx-
mation of an integral of a4 k-dimensiona] continuous function
by sampling its values at a fnite et of points. For the sake of
gimplicity let us assume that the integration is resricted to a
k-dimensional unit eube, One straightforoard approach is o
place the points along equally spaced intervals on a d-dimen-
sional grid. Afthongh this iz a good arrangemenl, the number
of points needed to keep the average error less than e is
roughly proportianal to 1/% The teaditional alternative is ta
use a Monte-Cario method where the points are chosen com-
pletely randomly using a psendorandam mumber genetator,
The approximation to the ntegral is then based on the func-
tinn evahration at these points. Although on the Averape the
nurber of points required to keep fo error within e is hougd
by 1/6* there is no methodical way for comstructing the sam-
ple points te achicve the bound (Papageoriou and
Wasilkowski, 1990). Recently, Wozninkowksi (1991) showed
that the shifted Hammersley points provide a  low-dis-
crepancy design. The number of points required to contain
the epproximation error within ¢ is proportional to (1/e)
{log (1 ey =102,

Tn this section we deseribe A new sampling technigne de-
signed uwsing the Hammersley scquence. We call this now
technique the Hammersely sequence sampling (HSS} tech-
nique. The basie idea behind this technique s to teplace o
Monte-Carlo integration with a qoasi-Mante-Carlo scheme.
This quasi-Monte-Carlo scheme nses a guasi-random numier
Eencrator bascd on the Hammersley potnts to uniformly sam-
ple a unit bypercube, and ioverts theas points over foint cu-
mulative probability distribution to provide a sample set for
he variables of fnterest, In the fotlowing Lwo subsections we
deseribe an alporithm:for generating the Hammersley points,
and then describe the implementation of inversion and the
impaaition of a correlation stcture on the sample.

Hummersley tequences

The cholee of an appropriste quasi-Monte-Carlo sequence
i based on the concept of discrepancy. The deterministic p-
pet and lower error bounds of any sequence for intepration
are expressed [0 terms of the discrepancy measurc. Discrep-
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ancy if a quantitative measure [or the deviation of the so-
quence from uniform distribution. Therefore it i Fpically
desirable ta choose a Iow-discrepancy sequence. Some cxam-
ples of fow-discrepancy sequences are the Halton {1986) and
Hammersiey (1960) sequences, However, the constant tetros
on the error hounds for these sequences are a strong [une-
tion of the dimension & of the vnit hypercube and other se-
quences such as the Sobel sequences (Nicderreiter, 1978) and
Faure sequences {Fox, 1986) that fave been developed to al-
Teviate this problem. The other problem often encountered
with the previously cited seguences is that the errne bounds
are nol adequately scnsftive to the form of the integrand.
Several designs vsing “good lattice™ puints werc introdueed
by Korobav (Niederreiter, 1978, 1988) in the litcrature 1o ad-
dress these issucs. Without embarking on a detailed discus-
sion of these issues (the interested reader is referred o
Nicderreiter, 1992), it is apparent that we are faced with the
issuc of which sequence should one use far the desipn of a
guagi-Monte-Carlo sampiing technique.

Itn this article, we have chosen to use a variant of the Ham-
mersely sequence. In the following paragraphs we provide a
definition of the Hammersley points and explicaie an algo-
rithmn for the Hammersley design.

Any integer # ¢an be written in radiz-R notation (R is an

integer) a3 follows:
RSPty g Myt =Ry R+ MR 4 v 4 p, BT,

where m=[logpnj=[{In »)Aln R, and the square brackets
denote the integral part, A unigue fraction hetween @ and 1
called the frvere radix number can be constructed by revars-
ing the order of the digits of # ahout the decimal point as
follows:

dplit) = Qmn iy iy =ng R m R34 oo, R

The Hammcrsley poinks on 1 k-dimensional cube ig given by
the {oilowing sequence:

‘-'.t{"] = [%’ "-le,{nL ‘?:'R,(n]; Ty d’.ﬁp_l{”}J n=12, -y N

where By, Ry, -, R, _, are the first &-1 prime numbera. The
Hammersley points are x,(n) = 1 — ¢,(#). Now we present an
algorithm to generate N Hammersley points:

1, k+dimension of the unit cube, &« oumber of sam-

plca
3, i1 _
3. R+ pen_primie(t), i+~ +1
4 MHizik=11goto3
3. cowerrt — 1, nn*—l
O, P2, 2+ —
¢
Tz i _rodie(m, fe i+ 1
B itig{k~1goto?

% oxdr)=1-2z,
10, cowmt v count =1, ne—n+1,
1L If comme < A pov ko 5.

gen _prirte(f) is a subroutine that gonerates the fth primne
number; ino__radida) it a subroutine that generates the in-
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verse radix notation for 1, We have implemented & version of
this aigorithm and tested it extensivaly using different distri-
butions. A prime number generator from Knuth is nsed (1973,
pp. 143—44).

Implementotion of correlation structures

The implementation of correlation stroctures is bascd on
the usc of rank correlations (Tman and Conowver, 19820, The
methnd 5 very simflar to the ons used for Latig hyperoube
samples with one difference: LHS uses a matrix of indepen-
dent permutations of arbitrary soores for generaling a corre-
lation structure, whereas for HSS we ose the Hatmcrsley
points for the same purpose. Tn this suhsection we outline the
method based en rank correlations wsed for Penerating a cor-
relatien structnre in LHS and highlight the main difference
in the implementation for the 1155 technique.

Let & be a matrix of uncorrelated mandom verctors, and let
(2 he the desired rank correlation matriy of X, Then rince O
is positive definile, = P pr (Cholesky factorization),
where F is a fower tmiangular matriz, Then for some Tnatrix
R of arbitrary scores the transformed matrix B* = B x P has
the desited rank comelation mauix € R is chosen such that
correlation matrix and the rank comelation matrix of R* are
the same Now to introduee the dosired rank corredation in
A, the random vectors arc arranged in the same rank order
85 A% For LHS, the matrix ® is oonstmacted {rom van der
Warden scores (Tman and Conover, 1882}, whereas for H3S
the matrix is the set of Hammersley points,

A: Monle Carlo

B: Lefin Hyporcuta

Figurs 2, Sample points {(100) on @ unit square using
{A} Wnaar congruent generator, {B) random
Latin hypercube, (C) median Latin hypercube,
and {D} the Hammersley points,
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The main impact of using rank correlations for 1SS is that
the uniform stevcture of the Hammersley points is somewhat
distorted; however, its efoct on the transformed sample is
not easily characterized analytically, Whether the distortiens
are large caough 1o eompletely negatc the advantages of the
Hammcrsley pofnts is an empirical question that s invesr-
gated in the following section % comparing the CONVETgEncE
properties of M58 with LHS for correlated satuples,

Uniformity properties of the Hemmerstey potats

In our disenssion of different sampling techniques, we cx-
plicate the imporiance of the urtilermity propertics of a sam-
pimg technique when the sampls is ased for approxtmating a
distribution by finite samples. Figure 2 praphs the samples
Beneraled hy differamt techniques on a uni sguare, This pro-
vides & gualitative picture of (he wniformity preperties of the
ditfereni technigues. It is clear from Figure 2 thar the Ham-
mersley points have better uniformity propertics compared to
other techniques. The main reason for this ig that the Ham-
mersley points are an optimal design far placing r peints on
a k-dimensional hypercobe. In conkrast, other stratified 1ech-
niques such as the Latin hypercube are desipned for wniform.-
ity nlong a sinple dimension and then randomly paired for
Placement on & &-dimensional cube. Therefore the likelihood
of such schemes providing good uniformity propeties oo
high-dimensional cubes is extremely smati, Fignre 3 illus-
trates the effect of imposing a correlation structure on the

—

Az Mante Sarlo

B: Latin Hyperquba

Figure 3. Sample paints {100} on a unlt aquare with cor.
relatfen of 0.9 using (A} linzer cangruant gen-
erator, {B) randem Latin hypercube, (C) me-
dian Latin hypercuke, and (D} the Hammers-
ley points,
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sample sets. The approach vsed fs deseribed in the earlier
section, which uses rank corrclations o preserve the smrati-
[ied design along each dimension, Alhough this approach
Preserves the uniformity properties of the stratified schecmes,
the optimal location of e Hammersley puints is periurbed
by impasing correlation structure, The effect of this og the
uniformity propetties is not apparent from Figurea 2 and 3;
however, we will examine this issue in detail in the following
subsections,

Conpergence propertics of famplers

In this subscction, we provide a comparison of the perfor-
mance of the HES technigue to that of LHS and Maonte-Carlo
(MCS) techniques.. The comparison is pertormed by propa-
gating samples derived from cach of the techniques for a set
of p-input variables (X)), through variows nonlinear functions
(Ve flX X, .. X)) and measuring the number of sam-
ples required to converge to the mean and variance of the
derived distribution for ¥, Sinee there are no analylic ap-
proacites {for stratified designs) ta calolate the number of
samplez required for convergence, we lave conducted a large
matrx of numerical tests. The design of the test matrix in-
cluded varying of the type of function, the number of inpurt
variables, X, twpe of mput distribution, and the correlation
structures botween them. The details of the test matrix are
deserihed balow:

Sompling Technigues. A total of four sampiing technigues
have heen compared: Monte Carle, randnm Latin hypereube,
median Latin hypercube, and the Hammersley.

Nuraber of Variables.  The number of input variables used
wag varied between 2 and 10, '

Functions,  Five different kinds of functions were used and
are outlined below:

1. Funetion 1: Linear additive function: ¥ = LK

2, Function 2: Multiplicative function: ¥ = X,

3. Function 3: Quadratic fonction: ¥=CL.X7 for im32,
Y=X}+ x}

4, Funetion 4: Exponential function: Y=TX Xemp X,

5. Function 5: Logarithmic function: ¥'= £, X, xlog (X, 1)

Distritnaions.  Three types of distributions have been used
for the input variables X, Two of them, uniform and normal,
are symmelric and the third {5 a skewad distribution, lognar-
mal, '

Carelntions.  Three types of correlation structures have
been used: the first s a zeto eomelation, and the other o
SCLE 13z a correfation of 0.5 and (1.9 between the input vari-
ables,

The mairix reprosents & total of 180 daia sets (4 sampling
techniques X 3 bpes of distrbutions % 3 correlation struce
tures x5 lunctions) far each set of input variables, X,. As
the number of input varfables is varied from 2 (o 10, it adds
another faetor of B, that is, 1,6 data scis, However, in the
interasts of space and clarity, we prasent only the resules that
highTight the main findings of this numerical cxperiment. -
tially we present two fignres {Figuee 4 and 5) that ilustrate
the rate of comvergence for the three sampling rechnigues:
MCS, LHS, and HS% sampling techniques. Figure 4 Plots the
mean and the varianes (or Funetion 2 using twe input vari-
ables that are uncorrciated, A unifarm disteitrtion 7 (0.1,1)

¥

15 used for bDoth the inputs. The results are unequi-
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Flgura 4. Mean and varlance as & function of sample
Zize for MCS and LHS (dottad line} and H5S
{solid line) for 2 input varlablas without corre-
lations: (A) MC3 vs, HSS (B) LHS vs. HSS,

voeak—MCS requires 2 significantly large number of samples
compared to LHS and HSS, and the H5S technique requires
far fewer samples to converge to within 15 of the varsance as
eompared e LS. The results are similar for correlated sam-
ples (Figure 5).

Figure & presents a more comprehensive view of the com-
parisons conducted in the numerical caperiment. This [igmre
plots the ratio of the LHS-to-HSS sample size a3 A function
of the design parameters (outlined in the matrix given car-
lier} of the Aumerical experfments. The sample zize used for
this cnrmparisan is the number of samples requited to con-
verge to within 1% of the actiral value of variance. Each auh-
graph plots the ratio of the sample size against the oumber of

Variance {Fanction-2»
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Figure S, Variance a3 a functlan of sampie slze for MCS
and LHS {dotted line) and HSS (=oiid line) for
2 Input variables with corrslation of 0.9: (A}
MES vs. HSS (B} LHS va, HSS,
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ferent design parameters for 1% eorvargence
of variance: (A} function-1 to furction-2 for
uniform Input distributions, and {B) function-1
1o functian-4 for lognormal input distrfbutions.
Mote that wherever LHS did not converge
within 10,040 samples It was assumed that the
converganse paint is 12,500 samples {large
number},
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inpul variables for the four functions (funetion 1 o function
41 anef for ovo types of input distrfvitions; uniform fsymmet-
ric) and fognormel (asymmetric) uniform inpurt distributions,
Once again the results are encouraging—the HSS sampling
technique has a much faster convergence rate, anywhere from
a factor of 1.5 to 100 and larger! The resnlts presenied here
are qualitatively reprosentative of the peneral trends ob-
served for all the data sets thal were analyzed.

In the next section, we apply the new sampling schemne to
the robmst design of a batch distillation column and llustrate
the computational savings as compared to using the convan-
tionat technigues such as Monte Carls ar Latin hypercube,

Rabust Design of a Batch-Distlliation Column

The sudden incresse mn the production of high value-ad-
ded, low-volume specialty chemicals and biachemicals in re-
cent years has generated renewed interest in batch-diggilla-
tien design. Howaver, the corrent design procedures are still
based on deterministie framework, We fitst present a de-
scription of the robust desien problem in the context of
batch-distillation column desigm and then outline the sample
size¢ rcquired to characterize the varfance of the ontpuot Trom
the process that needs 1o be controlled for quality. Finally,
we present the computational burden of solving the robust
design problem for both the sampling techniques.

Problem definition

Figure 7a shows a ennventional batch-distillation colomn
with a rchailer at the hottom and a tondenser at the tap,
which essentially performs the rectifying operation. For sim-
Plicity, consider a Winane mixture with the feed composition
Xz of a more valatile component (maole fraction} and total
ferd F (moles) 1o be separated in 2 batch distillatfion column,
Therz ars vatigbilitics and fluctuations in feed composition
and feed amounl over different batches, which amounts to
seying that the feed composition {x,), and fzed {7 are un-
certain quantities. There arc measurement errors in gquantis-
ties like vapor boilup rate I {function of heal input to the
rehoiler), and refluz ratia R, The thermodynamic errars lead
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Figure 7. Robust design of a batch column; (A} a batch
distiilation column, {B) comparison of LHS
{dotted) vs. HSS (solid line) for varlance cal-
culations far the batch ealumn.

it uncertainties in rclative volatility (o} predictions. Given
these variahilities and uncertainties, we want to design & batch
column that will maintain the amount of product with the
given purity. These variations are assumed (o be at £,5 er-
ror levels in the ifnputs, E, = o /u, ¥ 100, nomally dis-
tributed. Mumerical values af the design and noise varigbles
{nominal vatues, p, and % emor levels E;} are given in Tabie
1. Sa the problem of robust desipn translates into Anding the
numbér of thearetical plates and reflux ratio required to min-
imize the variange in the distillate amount (expressed in terms
of a loss function described in the next subsection) of specific
purity x7.

Since the obfective from a robust design perspective in-
volves minimization of varisnce in the amount of distillare
(loss function), we characterize the number of samples re-
guired o estimate the variance to within 1% of fts value us-
ing horl Latin hypercuhe and Hammersley points. Tt should
also be noled that calenltion of the mean tequires p signifi-
cantly smalier number of samples than vadance, and vagance
caleulation is the major efficlency bottleneck for the robust
design problem. The Hammersley points requires about 650
points to converge as compared to 6,550 points required by
the Latin hypercube sample. Figure 7b plots the variance as a
function of mrmber of samples. However, minimizing just the
variance {aor & loss function bascd om varianee) can lead to
scvere overdesigm, therefore, we arc considering an economic
criterion with the associated doss due to veriations as the ob-
fective funelion,

Ohjeetive finction

Here we formulate the economic ohjective function based
on the mean values of the parameters. The aljective function

Table 1 Paranteters and Their Valnes Used in the Study

Parometer Values Units &
¥ 2.0 5
Ic 0.5 mal fraction 10
i 15 5
1 100 malsh 3
F 100 rol 10
b {93 ol frecton
I 36 ol
W 1005
445




is derived from the profit function described in Brrvcloar
{1995}, The obfective was to maximize provit. Assuming o =
average nuinber of moles of product distitled, P = sales wajue
aof the product relative to the cost of feed $0.1,/mal, the proft
function can bc written as

P 2{I63IDF. o kN b M350 T "
Ty, G, G,  Tar

whera
€y = amartized incremental imvestment cost [Slﬁ.ﬂmz,.—'piam;}'r]
€3 = amortized incremental cost of the couwipment [3L.65mA4t]
3= ¢ast of the steam aod coalang to SAPOGEE oF crndense, respoc.
tively, 1 kg of distillaie (5000835 /lca]

G, — allowable vapor veiocity [15.0 [
€3, = vapor-handling caparity of the equipment H.1028 ke dm?]
N'= number of plates

= hatelr time (mverage) f

f:—=setup time for each barch 0.1 ]

V= vapor boilup rate [ke/n]

To fncorporate the robyst desim concepts in the objeciive
funetion we necd to add the measurement of quality during
design. Following Phadke {1959} 4 quadratic toss funcrion is
included in the profit function described earlier. Here we are
using the asymmetric loss function showm below,

p o DESIDE oWN o,V 240365300 T Loy
T".Lfs - G.d -Eﬁ-_ T+:; =LY

{2

Liyd=Kly-nP, y>u 1

=Eyly—pu¥, pop (4)

The quality vaziable in this exercise is the amount of distjl-
late. IF the total distillqte i8 less than the specified valug, then
there s a definite loss, thercfore, we are using K =
(24C365)P AT 4 2,)/300. In this SXCTCISC We are assuming
that if ot produce more product v, = o then there i no loss
that is equivaient to &, =i,

Solution procedure

The iterative nature of the robust design calis for nse of
simplified models, The shoricut method presented by D
wekar and Madhevan {1907} privwides an efiicient alternative
for robmst design. Apart from computational efficiency, lower
MBMmery requirements, and the algehraie equation orfented
form of the shortent mcthad, it iz alen useful in ideatifying
the feasible region of operation crucial for design problems,
Futthetmare, the dimensionality of the prablem does not in-
crease with Increasing qumber of Plates, and the design vari-
ahle number of thepretical plates iz not an fnteger, Thesc
attributes make the shaortcyt method desirable for robust de.
S procedures. For desails of the shorteur metlnd, please

-refer to Diwekar (1995),

As staled earlier, the rabpst design problem involfves soi.
ton of 4 stochastic optimizating prableim. Please note that it
ia casicr to manipulate operating variables to adjust for the
varlations, therefore, along with the key desigh variable, N,
we are inchuding the operating varlable, &, in the optimal
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decisions, The following procedure ontlines the steps for
salving the robust design prablem stated eatlior,

1. In the stochastic aptimization the optimizer in the ouipr
loop finds the decision variahle & and reflux ratig £, and the
inner [oop is the stochastic muodei,

2. Quter loop—Ar first we need 1o find the feasible repign
for the decision variable & for the convergenes of the optj.
mizer. The minfmwm nrmber of plates N provides the
lwer boond [or ¥, the uppet bound can he specifeg from
the economis constraint, which i specified to he 25 In thig
case,

Using the preceding telationship for the minimum qumber ar
plates, the lower bound for the problem given in Table { i
found 1o be 4.25 (inclnding rehefler a5 one plale}, Therefors
the following hounds are used for the preceding problam:

LR\ 8

where ¥ does not include the rchojler,
3. Fer the given value of ¥ and R, perform the inner-loop
caloulations.

(a} Inner loap— Rypy provides the lower hound to R
For the given value of %, the lower hound for R is calen-
tated.

{b) Szmple the naise variables RV, xp, F, and o using
the HSS sampling technique. (We have also wsed LHS [or
evaluation of the performance of the new sampling tech-
nique,)

(c) If R for the sample s less thap or equal o Ry
{where Ryny is defined as the value of R required to ahiain
tle distiilate composition of the key component (39 equal
T the specified average distillate composition (x5} at the ini.
tinl conditions for the given N, then couate the total distil.
tatc D=0 for that semple. Otherwise, run the shortant model,
stop wlen the average distillnge compnsition i3 cqual to the
xg valuc for each sample, and find the distiilate amaunt D
for each sample,

(d} After ail the samples are pasged {hrough the shertout
model, Find the objective function for the outer leop. IF the
profit i8 maximum, then the qumber of plates and the Teflux
profiie represent the rofurst deaign, else, repeat the inner loop
calculations. Figure 8 shows the variation in the product

I T R B L T LU LR I, T T I T
Pednct Laen in Meten of Dlst e Prodinct Lose dn blales of DiztMne
Figure 8. Variations In the amount of dlatillate, bofora
(A} and after (B) design for fuality,
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amouont before and after the robust design, whers the vari-
ance in the loss function (when the total distillate is less than
the specified value) is reduced fram 256 to 77. The new opti-
mal design requires 17.5 theoretical plates and a time-depen-
dent reflur profile of R, = 2.5¢ as compared 1o the originai
design of M=7.5 and R, = 3.5 +(.25, The aptimal design
resulted in a threefald intrease in the annual profit.

Conclusions

This article presented a new sampling technigue based on
Hammersley points, This new sampling technique is shown ta
have better nniformity properties, which reduces the compu-
tational intensity of the stochastic optimization problem cor-
siderably. A robust design concept was intraduced in the con-
text of a batch-distillation column design operating under in-
ternal and external uncertainties. Since the robust desion
voneepl cssentially invobves solution of the siachastic opti-
mization prohlem, it was found that this sampling technique
is akways preferred for robust/parameter design problomes,
This i hecause of its high precision and consistent behavior
coupled wilth great computational cfficiency, The coOmputa-
tiomal efficiency of this new sampling technique shows grent
promise for its use in other application areas such as stochas-
tic modeling, Monte-Carls simulations, and experimental de-

Eifm.

Literature Clted

Bendell, A, 1. Disney, and W. A Pridmore, Taguchi Methods: Apph-
cationy fr World fadusier, 1FS Pyhlication, Sprinpger-Yerap, UK
{1980,

Bomdrige, 5., Evatuation of Paramerer Dasign Meshodalogies for the
Deslgn af Chemical Processing Draize, M. 5. Thesis, Uniy, nf Ottawa,
Orteoea, Ont Canpda €10900,

Cott, B. T, and 5. Maehcheiita, "“Minimizing the Effacts of Hatch
Process Variahility Using On.dine Schedule Modification,™ Care-
pud. Cham, fnp., 13, 105 10809,

Cursin, C., T. Mitehell, M. Morris, and T, Yiwizaker, “Bovesian Pre-
diction of Dotermindstic Functions, with Applications 1o the Dra-
st and Analysis of Computer Expedments” 7, Amer, Stae, dp
Sac,, B4, 953 {10017,

Diwekar, 11, M., Batch Dirtiflation: Sirmalarion, Optimal Desigre and
Comml, Tayler & Francis, Washington, DC (1945,

Biwekar, U M., and i, P Madhavan, *Muolticomponent Baich Dis-
tillation Column Design,” fad, Enp. Chem, Res, M, 713 {1991).
Mwekar, U, ., and E. 5. Buhin, “Siochastic Modeling of Chemical

Provesses,” Compm, Chem, Eng., 15, 105 {1501}

Diwakar, U1, M., and E. 5. Rubin, “Parameter Design Method Using
Stachpatic Oprimization with ASFEN" Ind. Eng. Chem. Ret., 33,
282 (1004},

Easterling, B. 3, “Discussion of Kackar's Papen,” F. Oual, Techanl,
17, 191 (198G},

Fo, B. L., “Algnirithm 647 Implemcntation and Relative Efficiency
of Quasi-Rndom Sequence Generators,” ACH Trans, Ak, Soft-
witre, 12, 362 (1986},

Halton, T, H., “On the Effiviency of Certain Quasi-Rardom Se-

© guenees of Poinls in Evaloating Multi-Dimensional integrals,” M-
mer. Mady, 2, 4 {198g),

Hammersley, 1, M., “Moste Carln Methods for Solving Multivariate
Froblems,” Ann, NV, Acad, Sci_, 86, A44 (19600,

Hufsér, 1, 5., “Statisical Desion Applied to Product Design,* 7. Gual,

~ Technal, 17, 215 (19830,

Terapeiciton, d. G, and E. N, Fisttkopoulos, "Batch Flant Tesign
end Operations under Unceetainty,” fud. Enp. Campue, Fes., 35,
T (1906).

Imar, R. I, and M. I. Shorteocarier, A FORTRAMIT Program and
Liser’s Guide for Genemation of Lalin Hypereabe and Randem
Somples for Usc wilh Compiter Models, ANUREGATR-3624,
LANDEZ-2365, Sandia Natinnal Lab.. Albuguergue, N (1084),

Iman, R. L., and W. I. Conover, “Small Sampie Sensitivity Analysis
Techmiques for Computer Models, with an Applicalion to Rigk As
sessment,’’ Commmnn. Seer, A17, 1749 (1082),

Kacker, B. 5., "Oif-linc Cuality Control, Paramcter Diegign, anl the
Tapuchi Method,™J. Q! Tecfing! 17, 175 (19R5),

Knuih, I B, The A ofCﬂmmchmgmmme‘ug, Val. I, Fundaten-
faf Afparithrer, Addizon-Wesley, Reading, MA (19733,

Mekay, M. D, W. T, Conover, and B T, Beckman, “A Compatison
of Three Methads for Selecting Values of input Yarialles in the
AnHI].;sis of Output from A Campater Code,” Techmomerrice, 21, 239
(19703,

Mignaon, . 1., 8 J. Honkomg, and G, ¥, Rellaitis, “A Pramework
for Tivestigating Schedule Robustness under Unegrtainty,” Copr-
pret. Chem. Eng. Supp, Vol, 19, 8357 (1063,

Worgan, ., and M. Henrion, Dneemaimtv: A Suide to Dieafing with
Llrncertninty in Quaontitative Risk and Policy Anaipsis, Camlridpe
University Pross, New York (1000,

Woullin, I, W, Crypsrallismtion, Butterworth -Heinemenn, Oxford (1503},

Mair, ¥, N, ed,, " Taguchi's Parameter Dresign: A Pane] Discussion,”
Technometazs, 3421, 127 {1907,

Wicderraiter, H., “Ouasi-Monte Carlo Methods and Fsevda-Random
Numbers,” Bull. Amer. 3Math, Soc, 84, 057 (1975,

Miederroiter, FL, Mrltidimensional Numerical Fategvation Using Poey-
dorandote Numbers, Stochastic Frograwmming, 84, Part I, A, Prekopa
and R, L-B. Wets, eds., Programmiing Study, Vo, 27, North-Hal-
land, Amsterdam, p. 17, (1025).

Miederreiter, FL, Random Number Generation and Crrasi-ponis Carla
Methods, SIAM, Bhiladeiphia, FA (1900,

Papagenrgion, A. and 3, W. Wesilkawski, “On Average Caze Com-
piexity af Multfearate Feablems,™ J. Compiladity, 6, 1 (19M0),

Phadke, M, 5., Grally Engineering Uxing Rotnot Dasip, Prentice HaTl,
Englewond Clffa, NT {10890

Beklaitis, G, V., “Process and Tssues in Compier-Aided Betch Pro-
cews Design,” Faundstions of Compiter-dided Process Derign, 1. 1L
aiirola, 1, B, Orossmenn, and G, Stephanopoulos, eds, CACHE,
Elsevier, Amsterdam, p. 241 (1089, -

Sacks, I, 8. B. Schiller, and W. I, Welch, *[esigns for Computer
LExperimenis,” Tecirmometnics, 11, 41 (1980,

Terwiesch, P., "Cautions On-Line Correction of Bateh Frogess Op-
eratiom,™ AFCRE T, 41, 1337 (1005, -

Teri, T 8., and C. T. Chang, ®Statisticad Operating Stralepios for
Charging Batch Reeetors,” AFCHE 1., 42, 1304 {1095),

Whatzrlorh, B, 1. G, Maef, P. I, Borten, and C. ¢, FPzntelides, “De-
terministic and Stochestic Simulation of Hately Bemicontinu s
Proceanes,” Compet, Chem. Eng. Suppl, Vol 17, 9343 {1893

Welch, W, I, . 1. Buck, 1. Sacks, H. P, Wynn, T4 1. Mitchel, and
M. T3, Mords, “Screening, Predicting, and Compater BExpadments,”
Technometrics, 34, 15 {1997},

Welely, W, I, and . Recks, “A Svstem for Cmality Improvcment vin
Cromputer Baperiments,” Commun. Stat, = Theary Methods 20, 477
(10917,

Weleh, W, I, T. K. Yo, 5. & ¥ang, and 1, Sacks, “Computer Expeor-
iments for Cuality Control By Parameter Dezien,” J. Ounl, Teek-
Hol, X 15 {10a0),

Woeniakowsld, H., “Average Case Complexity of Multhariate Tnte-
gretion,” Sull. Amer, Math. Sne., 24013, 185 (1991),

Yu, T. K, 5, M, Kanp, J. Sacks. and W, . Welch, "FParametric ¥ield
Optimizatdon of CMOS Analog Cirenfts by Quadratie Stalistiol
{ircnit Performance Modcls,” fre, 7 O Theary, Appl, Yal. 19,
p- A% (1097), .

Measnserip receincd Ape 20, 1995, and rision recelued July 18, 199,

Felmary 1997

¥nol. 43, Np. 2 447



