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Abstract—Technical and economic uncertainties are not rigorously treated or characterized in most
preliminary cost and performance estimates of advanced power system designs. Nor do current design
methods rigorously address the issues of design under uncertainty. However, process costs and other
important quality measures, such as controllability, safety, and environmental compliance, largely depend
on the process synthesis stage. This conceptual design stage involves identifying the basic flowsheet
structures from a typically large number of alternatives. This paper describes recent developments in
on-going research to develop and demonstrate advanced computer-based methods for dealing with
uncertainties that are critical to the design of advanced coal-based power systems. Results are presented
illustrating the use of these new modeling tools for the environmental control design of an advanced energy
system based on an integrated gasification combined cycle (IGCC) for electric power generation. © 1997
Elsevier Science Ltd.
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INTRODUCTION

Increasing environmental awareness and regulations have placed new requirements on process
design for advanced power systems, and increased the need for more sophisticated simulation and
design tools to examine pollution prevention options. Conventional process models now in use are
largely based on a deterministic framewerk used for simulation of a specified flowsheet. An
important shortcoming of these models is fheir fHability to analyze uncertainties rigorously.
Uncertainty analysis capability is especially important in the context of advanced energy systems,
since available performance data typically are scant, accurate predictive models do not exist, and
many technical as well as economic parameters are not well established.

Though design under uncertainty has received considerable attention in the chemical engineering
literature during the past few years, a generalized framework for analyzing uncertainty
systematically has only recently been developed around a chemical process simulator [1]. In earlier
work, we developed a generalized capability to assign probabilistic values to model input
parameters, and to sample these distributions to obtain probabilistic results using Latin Hypercube
sampling methods. That capability was built around the ASPEN process simulator [2] developed
for the U.S. Department of Energy (USDOE). This stochastic simulation capability has been used
successfully to evaluate different configurations of integrated gasification combined cycle IGCC)
systems, an emerging technology for the clean and efficient use of coal for electric power generation.
In particular, we have applied probabilistic methods to evaluate the performance, cost, and
emissions from IGCC systems, compare alternative systems under conditions of uncertainty, and
quantify the benefits from targeted research and development [3-5].

More recently, we have enhanced this framework to include a generalized capability to deal with
process synthesis and process optimization. We also have developed a capability to address
stochastic optimization and stochastic programming problems, with applications to advanced
energy systems. Sequential modular simulators, such as ASPEN and PROJII, have grown in
sophistication over the years and are widely used in the chemical industries to solve complex
problems with rigorous process modeling. The USDOE also uses the public version of ASPEN to
model a variety of advanced energy systems. Therefore, it was desirable to build the new process
synthesis and stochastic optimization capabilities around such simulators. The new capabilities
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On the other hand, for chance constrained optimization problems, where the constraints are
represented in terms of a probability of exceeding a certain value, the probabilistic functional is
represented by:

Optimize P1(z(x, u)) = E(F(u)) ©)
subject to ’
P(h(x,u) > f) < P (10)

where equation (10) is a chance constraint.

It is apparent from the above discussion that unlike the deterministic optimization problem, in
stochastic optimization one has to consider the probabilistic functional of the objective function
and constraints. The generalized treatment of such problems is to use probabilistic or stochastic
models instead of a deterministic model inside the optimization loop. Figure 2 represents the
generalized stochastic optimization problem solution procedure, where the deterministic model in
Fig. 1 is replaced by an iterative stochastic model.

This stochastic optimization capability can also be used to achieve off-line quality control. In
off-line quality control, the sensitivity of the design to the sources of variation is reduced at the

design stage to make the controller design easier. One such approach based on the concept of

Taguchi’s parameter design method has been illustrated using the stochastic optimization capability
above [9]. This approach involved minimizing the variance of the objective function instead of the
expected value. 3 R

)

Stochastic programming

In contrast to the stochastic optimization problems, stochastic programming problems concern
the effect of uncertainties on optimal design. This involves deterministic decisions at each random
stage or random sample, which is the same as solving multiple deterministic optimization problems.
This formulation can be represented as: -

- e 7 ?7 7
Opfimize™ = 2(x, i) (11)
subject to '
h(x,u*) =0 (12)
glx,u*) <0 (13)
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Fig. 2. Schematic of the stochastic optimization framework.
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Fig. 3. Schematic of the stochastic progamming framework.

where u* is the vector of values of uncertain variables corresponding to a particular sample. This
optimization procedure is repeated for each sample of uncertain variables # and a probabilistic
representation of outcomes is obtained. Figure 3 represents the generalized solution procedure,
where the deterministic problem shown in Fig. 2 fogms the inner loop and the stochastic sampling
forms the outer loop. This procedure is 1mplemented in the ASPEN simulator by simply
interchanging the position of stochastic block, STOCHA, and the optimization block, OPTM. In
this way, one can solve almost all the problems in the stochastic optimization/programming
literature.

METHODOLOGY FOR PROCESS SYNTHESIS

The alternatives for process desjgn ‘dnd environmental control aften are numerous and may
involve a very large search space. Selectionof the¥Best alterna‘tlves can offer the potential for
significantly reducing costs and/or improving performance. Therefore, there is a strong need for
“systems” research to identify the best ways of configuring advanced energy systems and other
complex processes. The current state of process synthesis techniques involves: (a) the heuristic
approach which relies on intuition and engineering knowledge; (b) the physical insight approach
which is based on exploiting basic physical principles; and (c) the optimization approach which
uses mathematical programming techniques. Here we describe a newly developed process
synthesizer built around the public version of ASPEN, using the mathematical programming
approach [10].

The mathematical programming approach to process synthesis involves:

(a) Formulation of a flowsheet superstructure incorporating all the alternative process
configurations.

(b) Modeling the superstructure as a mixed integer nonlinear programming (MINLP) problem
of the form:

MINLP: Z = r‘nllr‘l Ty + f(x,0) (14
subject to o
h(%,5) =0 (15)
hl(X,0)=v—z(X) =
By +g(x,7) <0

yeY, xeX
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The continuous variables x represent flows, operating conditions, and design variables. The
variables v are the output variables, which are related to the input variables x by model equations.
For equation-oriented environments, these model equations are embedded in the equality
constraints ~£1(x, 7). The binary variables y denote the presence or absence of specific process
units. }

(c) Identification of both the optimal configuration and optimal operating process parameters
by an algorithm based on an alternating sequence of nonlinear programs (to optimize a given
flowsheet) and mixed integer linear programs (to create alternative flowsheets from the model
superstructure). This alternating sequence of solution methods is referred to as mixed integer
nonlinear programming (MINLP).

The MINLP process synthesizer

The newly implemented MINLP process synthesis capability in the public version of ASPEN
is based on the mixed integer linear programming (MILP) solver ZOOM [11], and on the nonlinear
programming (NLP) solver SCOPT [12]. The method implemented is based on an algorithm called
GBD/OA/ER/AP presented by Diwekar et al. [10], which involves solving an alternate sequence
of MILP and NLP problems. The overall structure of the new synthesis capability is shown in
Fig. 4. Optimization of the MINLP process synthidsis problem is decomposed into continuous
optimization of NLP problems for a fixed choice'of binary variables, and discrete optimization
through the MILP master problem. The MILP solver (Master) and NLP optimizer have been
implemented in ASPEN as unit operation blocks and can be executed easily with the ASPEN
process unit blocks.

The process synthesis environment in ASPEN consists of the master block, the NLP optimizer,
and the entire superstructure. The initialization of continuous and binary variables is done in the
ASPEN input file. At this stage the scheme is translated into an initial flowsheet and subsystems
using the decomposition strategy of. Kravanja and Grgssmann [13]. NLP optimization of the
selected flowsheet is the first step in the ifiner [5p. “The solution yields the objective function value
plus linearization information. This information is passed to the master block which internally
modifies the master problem to include the linearization information. The solution of the master
problem results in a new flowsheet structure. The iteration stops when there is no improvement
in the objective function value. '

Mixed Integer
Linear Program Selected
Superstructure (MILP) Master Flowsheet
Alternative Topology
) PROCESS MODEL

"\ Setected FlowsheeSub /2K

Nonfinear Progran}— »
(NLP) Optimizer

Fig. 4. Schematic of the MINLP synthesizer framework.
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The implicit constraint problem

The implementation of this new capability in a sequential modular simulator poses challenging
problems which are not encountered in equation-oriented simulators, and new strategies are needed
to solve these problems. One such problem associated with the MINLP sequential modular process
synthesizer is that of implicit constraints. This problem is encountered because of the *“black box”
nature of the models in a sequential modular simulator. The ASPEN MINLP environment is based
on a two-level optimization algorithm consisting of an upper level MILP master problem and a
lower level NLP problem. The MILP master problem predicts new values for binary variables,
while the NLP problem provides new values for continuous variables. Since at each stage the MILP
master problem obtains linearization information from the NLP optimizer, the MILP master
problem represents the linearized NLP problem with non-fixed binary variables. Unlike
equation-oriented simulators, in sequential modular simulators most of the nonlinear constraints
are not represented explicitly by equations. The linearization information on these constraints,
which are essentially black box relations embedded in the simulator environment (£1(X, ) in
equation (15)), therefore, must be passed to the master problem.

In order to circumvent this problem of implicit constraints new decision variables are created.
These are equated to the output variables from the flowsheet configurations. This procedure ensures
that the original MINLP problem remains the same, while at each stage the MILP master problem
‘receives increased information from the NLP optimizer. Although this procedure assures complete
information transfer to the master problem, it also increases the computational load on the NLP
optimizer, which is generally the rate-determining step in the MINLP process synthesis. Recently
Diwekar and Rubin [14] presented a partitioning strategy which reduces the computational load
on the NLP problem, which is crucial for the solutlon of large-scale synthesis problems.

., -.\
L

Applications of the new modeling capabilities

The new capabilities for process synthesis and optimization under uncertainty provide powerful
new tools for the design and analysis of advanced energy systems. An application of the new
synthesis capability has been described in a recent paper [9], which focuses on choosing a least-cost
approach to sulfur removal for an 1ntegrated coal gasification combined cycle (IGCC) system with
hot gas cleanup and a fluidized bed gasifier. In “this paper we thow new results that illustrate use
of the stochastic optimization and stochastic progratnthing cap‘abllltles for the design of an IGCC
system.

A 650 MW IGCC system featuring an air-blown dry ash Lurgi gasifier using a high-sulfur Illinois
no. 6 coal is analyzed. A hot gas cleanup system is used for high temperature (600°C) sulfur removal
from the fuel gas with a zinc ferrite sorbent, with high efficiency cyclones and ceramic filters for
particulate removal. Details of the performance and cost models for this system are reported
elsewhere [3].

Two key design variables for the fixed bed zinc ferrite process are the sulfur absorption cycle
time and the reactor vessel length-to-diameter ratio. The sulfur absorption cycle time is constrained
to be at least as great as the time required to regenerate a bed of sulfated sorbent and return it
to active service after a regeneration cycle. As the sulfur absorption time becomes longer, more
sorbent is required to capture the syngas sulfur species over the increased time period. Larger
absorption cycle times therefore require either larger reactor vessels and/or more reactor vessels,
which increases the cost. The length-to-diameter ratio of the reactor vessel also affects process
economics.

Another key area of uncertainty for this technology is the NO, emission rate. Thermal NO,
emissions are expected to be quite low for IGCC systems due to the low heating value of the fuel
gas and the presence of thermal diluents such as H,O, CO, and N, [15]. However, the hot gas
cleanup system employed by the air-blown Lurgi system does not remove fuel-bound nitrogen (in
the form of ammonia) from the fuel gas, and a substantial portion of the ammonia is converted
to NO, upon combustion. Thus, NO, emissions pose a critical concern for systems with hot gas
cleanup. For example, using conventional combustors the USDOE performance model of the
Lurgi-based IGCC system yields NO, emissions nearly four times greater than U.S. federal new
source performance standard (NSPS) of 260 ng/J (0.6 Ibs/10° Btu) for coal-fired power plants.
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Future levels of NO, emissions are likely to be subject to much more stringent requirements because
of the role of NO, in acid rain and tropospheric ozone formation.

To mitigate NO, emissions, several approaches are possible. In the near term, the most likely
approach is the use of post-combustion exhaust gas NO, reduction technology. In the longer term,
advanced staged combustion designs featuring rich/lean combustion may be commercialized and
employed for fuels with high nitrogen content. In this study, we consider the use of selective
catalytic reduction (SCR) for NO, control. In a SCR system, ammonia is injected into the flue gas
upstream of a catalytic reactor through a set of nozzles comprising an injection grid. Because of
the temperature window required for typical SCR catalysts, the SCR reactor employed with gas
turbine combined cycle systems is typically located in the heat recovery steam generator. We
employ a new performance and cost model of an SCR system [16] to explore the effects of two
key design variables: the required NO, removal efficiency, which has a substantial impact on the
catalyst volume requirement, and the catalyst layer replacement interval, which can be varied to
achieve trade-offs between initial capital cost and annual replacement costs for catalyst. Since the
cost of catalyst is a major expense for SCR systems, optimizing this process design is of significant
interest.

Key performance and cost parameters of the engineering models for the IGCC system were
assigned probability distributions based on data analysis, literature review, and the elicitation of
expert judgments. The characterization of performance uncertainties focused on four major process
areas: gasification, zinc ferrite desulfurization, gas turbine, and the SCR unit. Uncertainties in
additional cost model parameters also were characterized, including direct and indirect capital

Table 1. Uncertain model pgramet,efs for illustrative case studies

Description and units® ", v Det. Val* Type Min Max  Other
Gasifier fines carryover, ' 5.0 F 0.0 1.0 5%
wt-% of coal feed 1.0 35 20%

3.5 5.0 25%

Fines capture in recycle cyclone [ %' . 7 o 95 F 50 90 25%
wt-% of fines carryover B A A O 90 95 25%
95 97 25%

Carbon retention in the bottom ash, wt-% 2.5 T 0.75 10.0 2.5
Gasifier coal throughout, Ib DAF coal/(h-ft2) 305 T 152 381 305
Gasifier NH3 yield, % of coal-N converted 0.9 T 0.5 1.0 0.9
Gasifier air/coal ratio, 1b air/lb DAF coal 31 T 2.7 34 3.1
Steam/coal ratio, 1b steam/Ib DAF coal
air/coal = 2.7 0.81 U 0.54 1.08 —
air/coal = 3.1 1.55 U 1.24 1.86 —
air/coal = 3.4 2.38 U 2.04 2.72 —
Zinc ferrite sorbent sulfur loading, wt-% sulfur in sorbent 17.0 N 2.16 3184 170
Zinc ferrite sorbent attrition rate, wt-% sorbent loss per absorption cycle 1.0 F 0.17 0.34 5%
0.34 0.50 20%
0.50 .10 25%
1.10 1.50  25%
1.50 500 20%
5.00 2500 5%
Fuel NOy, % conversion of NH3 to NO, 90 T 50 100 90
Gasifier direct cost uncertainty, % of estimated direct capital cost 20 U 10 30 —
Sulfuric acid direct cost uncertainty, % of estimated direct capital cost 10 U 0 20 —
Gas turbine direct cost uncertainty, % of estimated direct capital cost 25 U 0 50 —
SCR unit catalyst cost, $/ft3 840 U 250 840 —
Standard error of HRSG direct cost model, $Million 0 N —17.3 17.3 —
Maintenance cost factor, gasification, % of process area total cost 3 T 2 12 3
Maintenance cost factor, combined cycle, % of process area total cost 2 T 1.5 6 2
Unit cost of zinc ferrite sorbent, $/lb 3.00 T 0.75 5.00 3.00
Indirect construction cost factor, % 20 T 15 25 0
Project contingency factor, % 17.5 10} 10 25 —

‘DAF =dry, ash free; SCR =selective catalytic reduction; HRSG = heat recovery steam generator. ‘Det.
Val. = deterministic (point-estimate) value; min/max (+ 3¢ for N); and mode (T) or prob (F). Next columns indicate
type of distribution (F = fractile, T = triangular, N = normal, U = uniform).
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Fig. 5. Minimization of total levelized cost subject to expected value.

costs, operating and maintenance costs, financial assumptions, and the unit costs of consumables,
byproducts, and wastes. Through an interactive screening process, the initial set of approximately
50 uncertain variables was narrowed to a set of 20 which, most significantly affected uncertainty
in plant efficiency, emissions, capital cost, and total levehzed cost. These variables are listed in
Table 1. --\

Figures 5-7 show the results of different stochastic optlmlzatlon and stochastic programming
problems applied to the IGCC flowsheet. Figure 5 first shows results of a stochastic optimization
problem in which the expected cost of electricity (COE) is minimized for different levels of NO,
control (note that mills/kWh is identical to dollars/MWh). As the expected (mean) value of NO,
emissions is decreased, the expected value of NO, removal efficiency in the SCR unit increases
proportionally. The cost of the optimal design-also increases as emissions decrease. As seen in
Fig. 5, the optimal design reduces the expectcd COE~by 0;5 nfill/kWh relative to the base case
design achieving 190 ng/J (0.44 Ibs NO, /10° Btu) For the 650 MW plant modeled in this example,
this is equivalent to a total savings of approximately $2 million per year. This savings is a measure
of the benefit resulting from use of the new stochastic method to optimize the design parameters
of the zinc ferrite and SCR units.
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Fig. 6. Effect of uncertainties on minimum cost of the Lurgi IGCC system.



1734 DIWEKAR et al.: OPTIMAL DESIGN OF ADVANCED POWER SYSTEMS

NOy Emissions for Optimal Design (ng/J)

0 100 200 300
I ] | l
i I )
08 + +
2 [ 1
= 4
E 0.6 _: Objective Function : _._
E ! Minimize NO, Emissions |
[
& 04 1 Constraints :
s V4 . B
= ! COE < 60 mills/kWh
g - SOx < 0.06 1bs/10% Btu
Q 3 4
0.2 ‘T -,
1 1 l
0 1 | 1
0 0.2 0.4 0.6 0.8

NO, Emissions for Optimal Design (Ibs/106 Btu)

Fig. 7. Effect of uncertainties on minimum NO, emissions for a given cost constraint.

Figure 5 also shows that the expected cost of the' optimal design increases by 0.6 mills/kWh as
NO, is lowered from 260 to 95 ng/J (0.6 to 6.22 lbs/ 10¢ Btu). This provides an indication of the
expected cost impact of a three-fold tightening of ‘current U.S. standards. Over this range, the
optimal SCR removal efficiency increases from 73 to 90%, the latter being the maximum value
established by the performance model.

To illustrate results for a stochastic programming formulation, Figure 6 next shows the effect
of uncertainties on the cost of an optimal design. Here, NO, emissions are constrained to 215 ng/J
(0.5 1bs/10° Btu) or less, and SO emissions, 26 ng/J to (0.06 1bs/10° Btu) or less (the USDOE design
goal of one tenth the current U. S. federal standard) A pumulatlve distribution function (CDF)
is generated for a sample size of 100 feratidhs: The cost of electricity for the optimal design
configuration is seen to vary by more than a factor of four due to the performance and cost
uncertainties in the variables shown in Table 1. An 80% confidence interval gives expected costs
between 45.0 and 60.0 mills/kWh.

Figure 7 shows another example in which NO, emissions are minimized subject to a constraint
of 60 milis/kWh on the maximum cost of electricity, representing an assumed upper bound on
economic risk. The stochastic programming results for this case show a 45% probability of optimal
designs achieving between 86 and 130 ng/J (0.2 and 0.3 Ibs NO,/10° Btu). The median value of the
probabilistic results shows a NO, emission rate of 104 ng/J (0.24 Ibs/10¢ Btu) for this case. Figure 7
also shows a 20% chance of being unable to meet the cost constraint of 60 mills/kWh. For the
remaining 80% of optimal designs that are within the cost constraint, 2% of these designs have
NO, emissions exceeding 260 ng/J (0.6 1bs/10° Btu), which is the Federal New Source Performance
Standard for coal-fired power plants. For these cases, there is a significant risk that the process
may not be viable under the economic constraints imposed in this example, since the plant might
not comply with applicable emission limits.

These results are intended only to be illustrative of the new modeling capabilities now possible
with stochastic optimization and stochastic programming. Additional case studies for other
advanced power systems, including other IGCC designs, pressurized fluid bed combustion (PFBC)
systems, and externally fired combined cycle (EFCC) systems currently are in progress.
In conjunction with these efforts, on-going work also is developing new or improved cost
and performance models for selected process components and systems for IGCC, PFBC and
EFCC designs. These new models will form the basis for systematic comparisons of alternative
coal-based power systems, and the effects of uncertainties on their optimal design, cost and
performance.

Ay
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CONCLUSIONS

This paper has described a set of new systems analysis tools and methods that can substantially
improve the design and analysis of advanced coal-based energy systems. By enhancing existing
process simulators with the mathematical methods presented here (i.e. probabilistic modeling,
optimization, and MINLP synthesis), researchers and research managers now can tackle a wide
range of system performance and cost analysis not heretofore possible. This new toolbox can be
used in conjunction with new or existing process performance and cost models to insure that
process design issues are more fully and rigorously considered in all phases of activity. These
modeling tools also can be extended to a host of other technology applications where process
design, cost minimization, risk analysis, environmental compliance and R&D prioritization remain
important issue.

Acknowledgements—This work was supported under Contract no. DE-AC21-92MC29094 from the U.S. Department of
Energy, Morgantown Energy Technology Center.

REFERENCES

. Diwekar, U. M. and Rubin, E. S., Computers and Chemical Engineering, 1991, 15, 105.

. Massachusetts Institute of Technology, ASPEN User's Manual, Vol. 1. Reports DOE/MC/16481-1203.
NTIS/DE82020196, 1982.

. Frey, H. C. and Rubin, E. S., I & EC Research, 1992a, 31, 1299.

Frey, H. C. and Rubin, E. S., Environmental Science Technology, 1992b, 26.

Frey, H. C., Rubin, E. S. and Diwekar, U. M., Energy, 1994, 19(4), 449.

. Gill, P. E., Murray, W. and Wright, M. H., Practical Optimization. Academic Press, London, 1981.

- Biegler, L. T., Proceedings of the 2nd International Conference on Foundations of Computer Aided Process Design, 1983.

. Biegler, L. T. and Cuthrell, J. E., Computers and Chemical Engireering, 1985, 9, 257-271.

. Diwekar, U. M., Frey, H. C. and Rubin, E. S., I & EC Researgh, 1992, 31, 1927.

. Diweker, U. M., Grossman, 1. E. and Rubin, E. S., I & EC Research, 1991, 31, 313.

- Marsten, R., User’s Manual for ZOOM/XMP, The Department df Management Information Systems, University of
Arizona, Tucson, 1986.

12. Lang, Y. D. and Biegler, L. T., Computers and Chemical Engineering, 1987, 11, 143.

13. Kravanja, Z. and Grossman, 1. E., Computers and Chemical Engineering, 1990, 14, 1363.

14. Diwekar, U. M. and Rubin, E. S., I & EC Research, 1993, 32, 2006-2011.

15. Holt, N. A., Clark, E. and Cohn, A., Symposium on Stationary Combustion Nitrogen Oxide Control, Vol. 1, GS-6453.

Electric Power Research Institute, Palo Alto, CA, July, 5A~17, 1989.
16. Frey, H. C., Performance Models of Selegtive Catalytic Reduction NOx Control Systems, Quarterly report from
Carnegie Mellon University to U.S. Department of Energy, Pittsburgh, PAL15213, 1993,

17. Diwekar, U. M. and Rubin, E. S., I & EC Research, 1994333392, + -+

N —

——

ECM 38/15-17—H



o




