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The basic setting of this article is that of parameter-design studies using data from computer models.
A general approach to parameter design is introduced by coupling an optimizer directly with the
computer simulation model using stochastic descriptions of the noise factors. The computational
burden of these approaches can be extreme, however, and depends on the sample size used for
characterizing the parametric uncertainties. In this article, we present a new sampling technique
that generates and inverts the Hammersley points (a low-discrepancy design for placing n points
uniformly in a k-dimensional cube) to provide a representative sample for multivariate probability
- distributions. We compare the performance of this to a sample obtained from a Latin hypercube
design by propagating it through a set of nonlinear functions. The number of samples required to
converge to the mean and variance is used as a measure of performance. The sampling technique
based on the Hammersley points requires far fewer samples to converge to the variance of the
derived distributions. An application to off-line quality control of a continuous-stirred tank reactor

illustrates that the Hammersley points require up to 40 times fewer samples to converge to the

variance of the derived distribution.
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Parameter design is an off-line quality-control method for
designing products and manufacturing processes that are ro-
bust in the face of uncontrollable variations (Taguchi and
Wu 1980; Kackar 1985; Nair 1992). The goal of parameter

design is to identify design settings that make the product’s.

performance less sensitive to the effects of manufacturing
and environmental variations, and deterioration. The vari-
ables that affect a product’s performance are classified into

design parameters whose nominal settings can be specified

and noise parameters that represent uncontrollable varia-
tions both during a product’s lifetime and across different
units. A performance measure that is a function of the de-
sign parameters is chosen (different applications can lead
to the choice of different measures) so that maximizing this
measure minimizes the expected loss. To find these design
settings, it is necessary to have available a characterization
of how the noisy input variables affect the process response.

Two different approaches have been used to relate the
noisy input parameters to the process output/s: (1) Physical
experiments are conducted by varying the input parameters
over the noise space to generate a response surface, or (2) a
modeling approach is taken in which computational models
are developed (based on physical principles) that are then
used to study the impact of the noisy inputs on the pro-
cess outputs. The basic setting of this article corresponds
to the second case in which we conduct parameter-design
studies using data from computer models. The evaluation of
the important characteristics of process outputs requires a
scheme to estimate the output distributions from the input
distributions using data generated from computer experi-
ments. Monte Carlo-type methods are used for propagating
the effects of input variability through a computer model
to generate and study the output variability. Let u denote

the vector of noisy inputs; then a sample of n input vectors
w;,i = 1,...,n, which is representative of the uncertainty
distribution, is generated and the outputs, y; = H(u;), are
evaluated at each of these samples. H represents the com-
puter code that corresponds to the process model. The sam-
ples, y;, thus generated from the computer model are sub-
sequently used to estimate the important characteristics of
the process output. The scheme used to generate this sample
from the computer model lies at the heart of the parame-
ter design problem, and this issue forms the focus of this
article.

A general computational approach to the parameter-
design problem is obtained by coupling an optimizer di-
rectly with the computer simulation model using stochastic
descriptions of the noise factors (Boudriga 1990; Diwekar
and Rubin 1994) and formulating it as a stochastic opti-
mization problem. Such an approach is most useful when
the response of the model is not very smooth and it is hard
to construct a response surface. It is also computationally
more expensive, however. The stochastic optimization prob-
lem involves the evaluation of an aggregate measure (used
as a performance statistic) derived from a multivariate prob-
ability distribution, which is estimated numerically using a
representative sample from the multivariate space (as out-
lined in the previous paragraph) and has to be repeated at
each optimization iteration. Therefore, an efficient sampling
scheme that reduces the number of samples required for
each iteration can significantly improve the computational
efficacy of the stochastic optimization procedure.
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In this article, we present a new and efficient sampling
technique using the Hammersley points for uniformly sam-
pling a k-dimensional unit hypercube. The Hammersley se-
quence is one of a class of number-theoretic approaches
for constructing uniform sequences that are typically re-
ferred to as low-discrepancy sequences. This new sampling
technique requires far fewer samples as compared to other
conventional techniques (such as Latin hypercube sampling)
to approximate the mean and variance of distributions de-
rived by propagating a representative sample (for the inputs)
over nonlinear functions. For off-line quality control posed
in terms of stochastic optimization, the use of this efficient
sampling technique can significantly alleviate the computa-
tional burden. We illustrate this by applying the technique
for parameter design of a continuous-stirred tank reactor
(CSTR) and report computational savings of up to a factor
of 40,

The article is organized as follows: Section 1 introduces
the off-line quality control of a CSTR to motivate the
stochastic-optimization approach and the importance of an
efficient sampling technique. Section 2 provides a discus-
sion of the conventional sampling techniques used in the
literature and introduces the new sampling technique based
on Hammersley points. Section 3 presents the results of a
large set of numerical experiments conducted to compare
this new sampling technique to the conventional ones dis-
cussed in Section 2. Off-line quality control of a CSTR is
revisited in Section 3 to complete the analysis initiated in
Section 1. Section 4 provides the conclusions of this re-
search. ' »

1. OFF-LINE QUALITY CONTROL OF A
CONTINUOUS-STIRRED TANK REACTOR

In this section we introduce the example of a CSTR to
motivate the use of low-discrepancy sequences to perform
stochastic optimization for parameter design. A brief de-
scription of the off-line quality-control problem in the con-
text of the CSTR is presented. This problem is subsequently
formulated in terms of stochastic optimization, and the un-

derlying numerical integrations over the noise spaces are
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The Nonisothermal CSTR.
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outlined. The sample size required to characterize the mean
and the variance of output from the CSTR process is used
to compare the efficacy of sampling techniques. The com-
putational advantages gained by using Hammersley points
(as compared to Latin hypercube sampling) are provided to
motivate the use of low-discrepancy sequences for integrat-
ing over noise spaces.

The system investigated in this study consists of a first-
order sequential reaction, A — B — C, taking place in a
nonisothermal CSTR. This is a common example used in
the chemical-engineering design literature (Boudriga 1990;
Diwekar and Rubin 1994) and is used here for illustrative
purposes. Therefore, we have named the components A, B,
and C and chosen inputs and parameters values for illustra-
tive purposes. The process and the associated variables are
illustrated in Figure 1. We are interested in designing this
process such that the rate of production of species B(rgV)
is 60 moles/minute (mol/min). As is apparent from the re-
action pathway, however, species B degrades to species C
if the conditions in the CSTR such as the temperature (T’)
and heat removal (Q) are conducive. The objective of pa-
rameter design is to produce species B at target levels with
minimal fluctuations around the target in spite of continuous
variation in the inputs. The inlet concentrations of A (Cj;)
and B (Cp;), the inlet temperature (T;), the heat added
from the CSTR (Q), the bulk volume of the mixture in the
CSTR (V), and the volumetric flow rate (F) are prone to
continuous variations. (We have assumed here that the flow
into the CSTR and the flow out of the CSTR are equal.
The variations in the flow out of the CSTR are modeled via
the variations in the bulk volume of mixture in the CSTR.)
The objective of parameter design is to choose parameter
settings for the design variables such that the variation in
the production rate of rgV around the set point is kept to a
minimum. The system parameters are also summarized in
Table 1.

The five design equations that govern the production of

species B (and the steady-state values of other variables) in
the CSTR follow. The average residence time () of each

species in the reactor is given 7 = V/F:

Q= FpCp(T —T;) 4+ V(raHpra +rgHgp), (1)

Ca, | )

Ca= 1+ kQe~Ea/RTy’

_ Cp, + kge"EA/RTTCA

Cs 1+ kK%e-Bs/RTy @)
~r4 = ke FalRTC,, @)

and
—-TrR = k%e_EB/RTCB — kge_EA/RTCA. (5)

C4 and Cp are the bulk concentrations of 4 and B, T is the
bulk temperature of the material in the CSTR, and the rates
of consumption of A and B are given by —r4 and —rp.
These five variables are the state variables of the CSTR
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Table 1. Parameters and Their Values Used in the Study
Parameter Values Units Description

K8 8.4 x 105 min~" Physical constant
kg 7.6 x 104 min—1 Physical constant
Hea —2.12 x 10* J/mol Physical constant
Hgg —6.36 x 10* J/mol Physical constant
Ep 3.64 x 10* J/mol Physical constant
Eg 3.46 x 104 J/mol Physical constant
Co 3.2 x 10° J/kg degree K Physical constant
R 8.314 J/mol degree K Physical constant

p 1,180.0 kg/m? Physical constant
Cai 3,118 mol/m?3 Input variable

Csi 342 - mol/m?® Input variable

T; 314 ‘K Input variable

Q 1.71 x 108 J/min Input variable

v .0391 m? Input variable

F 0781 m3/min Input variable

: (calculated
initially assuming
. rgV = 60)

Ca 2,275.7 mol/m? Output variable
Cs 1,110.2 mol/m3 Output variable
A —1,6825 mol/m3/min Output variable
rg 1,534.5 mol/m3/min Output variablé

T 300 ‘K Output variable

and can be estimated for a given set of values for the in-
put variables (Ca;, Cg;, T3, Q, F, and V') and the following
physical constants: k%, k% and E4, Ep, the pre-exponential
Arrhenius constants and activation energies, respectively;
Hgra and Hgp, the molar heats of the reactions that are
assumed to be independent of temperature; and p and Cp,
the density and specific heats of the system that are as-

sumed to be the same for all processing streams. Once input-

variables are given, the state variables C4,Cp, 74,75, and
T can be solved iteratively. An initial value for the bulk
CSTR temperature T is chosen and Equations (2)(5) are
used to evaluate C4,CBp, T4, and rp, respectively. Substi-
tuting these values in Equation (1), the bulk temperature
T is solved iteratively using a secant method (Press, Flan-

nery, Teukolsky, and Vetterling 1986). If the production rate

is fixed as in this case, then one can free F' as the input
variable and calculate it iteratively to match the production
rate rgV. :

The design objective is to produce 60 mol/min of com-
ponent B; that is, Rg = rgV = 60. The initial nominal set
points for the input variables corresponding .to this point
are provided in Table 1. The continuous variations in the
input variables (C;, Cpi, Ti, Q, and F'), however, result in
continuous variations in the production rate, Rp. The varia-
tions in the inputs are described using two-parameter (mean
and variance) normal distributions. These variations are as-
‘sumed, for the purpose of illustration, to be kept at an er-
ror level for each input of E; = o;/p; x 100 = 10%. The

variation in Rg (around the initial nominal point) due to

the variations in the inputs is characterized as a probability
distribution. The distribution is estimated by sampling the
normal distributions for each of the six normal input uncer-
tainty distributions (with an error level of 10%) and solving
Equations (1)5) for Rp at each of these samples. The pa-
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rameter design problem for the CSTR can now be described
as a stochastic optimization problem in which the objective
is to find parameter settings for the input variables that min-
imize the variance of the output distribution for Rp. This
can be characterized in mathematical terms as a nonlinear
stochastic optimization problem as follows:

optimize J = P;(Rp(0,z,u)) 6
0
subject to
Py(h(6,,u)) = 0 (7)
and
P3(g(9v z, ’U.) < 0) 2 a, (8)

where u is the vector of ‘uncertain input variables
(Cai,CBi, T;,Q, F,V),0 is the set of control variables
(Cai,Cgi, Ti, @, V), and z is the set of parameters includ-
ing the physical constants. The P; represent probabilistic
functionals, which, for the case of variance minimization
of Rg, can be represented by '

1
a%h:/o (Rg — Rg)*dF, . 9

where F is the cumulative probability distribution of Rp.
The mean (Rp) and variance (5% ,) are estimated as fol-
lows:

Zi"" (Res — Rp)”

2
TRs" = Noamp (10)
and
R = / Ri(6,,u) dF. (1)
0
Zivsamp RBi B
= 2 B 12
Nsa.mp ( )

where R p; are the outputs of the N,,mp samples used for er-
ror propagation. The number of samples required for prop-
agating uncertainty depends on the accuracy required for
estimating the variance of the output distribution. The nom-
inal values of the variables are calculated using the preced-
ing objectives by solving the five equations [Eqgs. (1)-(5)].
The variance in the designed output variable is estimated
by propagating a sample set of points from the joint proba-
bility distribution of the inputs with errors. For the example
of the CSTR, we do not have any probabilistic constraints;
therefore Equations (7) and (8) can be omitted.

The nonlinear stochastic optimization problem is solved
using successive quadratic programming (SQP). In SQP, at
each iteration the problem is approximated as a quadratic
program in which the objective function is quadratic and
the constraints are linear. Similar to linear programming,
the special features of a quadratic objective function are ex-
ploited to solve the problem more efficiently. The quadratic
programming subproblem is solved for each step to obtain
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Figure 2. Pictorial Representation of the Stochastic Optimization
Framework.

the next trial point. This cycle is repeated until the opti-
mum is reached. The stochastic optimization procedure is
presented diagrammatically in Figure 2.

The stochastic modeler assigns the probabilistic d1str1-
bution to the model input parameters u, then uses a sam-
pling technique to generate a specified number of samples
(Nsamp) and passes the sampled value of each parameter to
the model. After each model run, the output variables of
interest (in this case the objective function and constraints)
are collected. The simulation is then repeated for a new set
of samples selected from the probability distributions. After
all the samples have gone through the cycle, the stochastic
modeler analyzes the output and finds the expected value of
the objective function and constraints, which is then passed
to the optimizer. ‘

One can easily envision the computational intensity of
the stochastic optimization problem (Fig. 2).presented ear-
lier. As in deterministic optimization, at each optimization
iteration one needs to run the stochastic model with many
samples to calculate the probabilistic functionals. The dif-
ferent sampling techniques currently available in the litera-
ture include the commonly used Monte Carlo technique and
stratified sampling techniques such as Latin hypercube sam-
pling (LHS). In our analysis of the CSTR, we found that the
Monte Carlo method requires well over 10,000 samples to
estimate the variance of Rp to within 1% of the true value.
The Latin hypercube technique reduces the sample require-
ment to about 6,100 samples. In contrast, the new technique
introduced in this article (based on quasi-random sequences)
requires only about 150 samples to achieve the same level
of accuracy as presented in Section 3. Such computational
savings motivate the use of low-discrepancy sequences for
multivariate integration over noise spaces. These techniques
and the new one (introduced in this article) using quasi-
random sequences are discussed in the following section.

2. THE NEW SAMPLING TECHNIQUE

Because most stochastic-optimization problems involve
integrals of some probabilistic functional [Eqs. (6) and (9)],
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we need to design a sampling technique that provides a
sample that is representative of the probability distribution.
A common approach is to generate a sequence of points
of size n on a k-dimensional unit hypercube, assuming a

“uniform distribution U(0,1). The specific values for each

input variable are selected by inverting the n samples over
the cumulative distribution function. The convergence rate
of the sampling technique depends in a critical way on how
the sequence on the unit hypercube is chosen. In this sec-
tion we discuss some of the commonly used sampling de-
signs (on the unit hypercube) and introduce a quasi-Monte
Carlo design based on the Hammersley sequence. Later we
show how a sampling technique that uses the Hammers-
ley sequence provides a faster convergence rate than other
commonly used techniques.

Perhaps one of the best known methods for sampling a
probability distribution is the Monte Carlo sampling (MCS)
technique, which is based on the use of a pseudorandom-
number generator to approximate a uniform distribution,
U(0,1) with n samples, on a k-dimensional unit hypercube.
The specific values for each input variable are selected by
inverting the n samples over the cumulative distribution
function. On average, the error-€ of approximation is of
the order O(N~1/2), The remarkable feature is that the
bound is not dependent on the dimension k. One of the
main disadvantages of the Monte Carlo method, however,
is that the bound is probabilistic, and there is no method-
ical way for constructing the sample points to achieve the
probabilistic bound (Papageoriou and Wasilkowski 1990;
Niederreiter 1992). It is also important to note that the er-
ror of approximating an integrand by a finite sample de-
pends on the equidistribution properties of the sample used
for U(0, 1) rather than on its randomness. Once it is appar-
ent that the uniformity properties are central to the design
of sampling techniques, constrained or stratified sampling
becomes appealing (Morgan and Henrion 1990).

LHS (Iman and Shortencarier 1984) is one form of strat-
ified sampling that can reduce the variance in the Monte
Carlo estimate of the integrand. The range of each input
u; is divided into nonoverlapping intervals of equal proba-
bility. One value from each interval is selected at random
with respect to the probability density in the interval. The n
values thus obtained for u, are paired in a random manner
with the n values of u2, and these n pairs are combined with
n values of u3 and so on to form n k-tuplets. The random
pairing is based on a pseudorandom-number generator. The
main shortcoming with this stratification scheme is that it
is one-dimensional and does not provide good uniformity
properties on a k-dimensional unit hypercube (for k input
variables). This approach still only provides probabilistic
bounds; however, it reduces -the error of the estimate as
compared to.the Monte Carlo approach.

The quasi-Monte Carlo methods seek to construct a
sequence of points that perform significantly better than
Monte Carlo, which has an average case complexity of the
order 1/£2. For a suitably chosen set of samples, the quasi-
Monte Carlo method provides a deterministic error bound
of the order N~!(log N)*~! without any strong assump-
tions about the integrand. Some well-known constructions
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for quasi-Monte Carlo sequences are the ones due to Halton,
Hammersley, Sobol, Faure, Korobov, and Niederreiter (Nei-
derreiter 1992). Fang, Wang, and Bentler (1994) examined
the applications of some of these methods for statistical
inference and regression analysis.

The basic idea in this article is to replace a Monte
Carlo integration by a quasi-Monte Carlo scheme in the
stochastic-optimization problem. In this section we de-
scribe a new sampling technique based on the use of the
Hammersley points. We call this new technique the Ham-
mersley sequence sampling (HSS) technique. It uses the
Hammersley points to uniformly sample a unit hypercube
and inverts these points over the joint cumulative proba-
bility distribution to provide a sample set for the variables
of interest. In the following two subsections we describe an
algorithm for generating the Hammersley points, the imple-
mentation of inversion, and the imposition of a correlation
structure on the sample.

2.1 . The Hammersley Points

The choice of an appropriate quasi-Monte Carlo sequence
is based on the concept of discrepancy. The deterministic
upper and lower error bounds of any sequence for inte-
gration are expressed in terms of the discrepancy measure.
Discrepancy is a quantitative measure for the deviation of
the sequence from the uniform distribution. Therefore, it is
typically desirable to choose a low-discrepancy sequence.
Some examples of low-discrepancy sequences are the Hal-
ton (1960) and Hammersley (1960) sequences. The constant
terms on the error bounds for these sequences, however,
are a strong function of the dimension k of the unit hy-
percube, and other sequences such as the Sobol sequences
(Niederreiter 1978) and the Faure sequences (Fox 1986)
have been developed to alleviate this problem. The other
problem often encountered with the preceding sequences
is that the error bounds are not adequately sensitive to the
form of the integrand. Several designs using “good lattice”
points were introduced by Korobov (Niederreiter 1978) and
Niederreiter (1988) in the literature to address these issues.
Without embarking on a detailed discussion of these issues
(see Niederreiter 1992), it is apparent that we are faced with
the issue of which sequence one should use for the design of
a quasi-Monte Carlo sampling technique. We have chosen
to examine the Hammersley points in this article. Once the
advantages of using low-discrepancy sequences (as com-
pared to pseudo-random numbers) is established, the opti-
mal choice of a low-discrepancy sequence can be examined.

This issue would be the topic of another article, however,

and is not addressed in this one.

In this paragraph we provide a definition of the
Hammersley points and explicate a procedure for it’s de-
sign. Any integer n can be written in radix-R notation (R
is an integer) as follows:

n = NpNpm-1-.-7M2N1N0

= no+nR+mR?+ - + nmR™,

where m = [logg n| = [Inn/In R] (the square brackets de-
note the integral part). A unique fraction between 0 and 1
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called the inverse radix number can be constructed by re-
versing the order of the digits of n around the decimal point
as follows:

¢r(n) =
= noR71 + n R~2 R nmR~™!

TN .. - Ny

The Hammersley points on a k-dimensional cube are given
by the following sequence:

k() = (F 0m (0,6 (0), ., B, ()

n=12,...,N,

where Ry, Ry, ..., Ry_y are the first k — 1 prime numbers.
The Hammersley points are 7, (n) = 1— 2z (n).

2.2 Implementation of Correlation Structures

The implementation of correlation structures is based on
the use of rank correlations (Iman and Conover 1982). The
method is very similar to the one used for Latin hypercube
samples with one difference: LHS uses a matrix of indepen-
dent permutations of arbitrary scores for generating a cor-
relation structure, whereas for HSS we use the Hammersley
points for the same purpose. In this subsection we outline
the method based on rank correlations used for generat-
ing a correlation structure in LHS and highlight the main
difference in the implementation for the HSS technique.

Let X be a matrix of uncorrelated random vectors, and
let C be the desired rank correlation matrix of X. Then,
because C is positive definite, C = P x P’ (Cholesky fac-
torization), where P is a lower triangular matrix. Then, for
some matrix R of arbitrary scores, the transformed matrix
R* = R x P’ has the desired rank correlation matrix C.
R is chosen such that the correlation matrix and the rank
correlation matrix of R* are the same. Now, to introduce
the desired rank correlation in X, the random vectors are
arranged in the same rank order as R*. For LHS, the ma-
trix R is constructed from van der Warden scores (Iman
and Conover 1982), whereas for HSS the matrix is the set
of Hammersley points.

The main impact of using rank correlations for HSS is
that the uniform structure of the Hammersley points is
somewhat distorted; however, its effect on the transformed
sample is not easily characterized analytically. Whether the
distortions are large enough to completely negate the advan-
tages of the Hammersley points is an empirical question that
is investigated in Section 3 by comparing the convergence
properties of HSS with LHS for correlated samples.

3. RESULTS AND DISCUSSION

In this section we examine the uniformity properties of
the new sampling scheme—that is, the HSS technique—
characterize its impacts on the computational intensity of
the stochastic-optimization problem outlined in Section 1,
and illustrate it with the CSTR example from process de-
sign. The results of this analysis are presented in the follow-
ing way. First the uniformity properties of the Hammersley
sequences are compared to sampling schemes graphically.
Next a series of numerical experiments is described that

Copyright © 2001. All Rights Reserved.



AN EFFICIENT SAMPLING TECHNIQUE FOR OFF-LINE QUALITY CONTROL
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Figure 3. Sample Points (100) on a Unit Square Using (A) Linear
Congruent Generator, (B) Random Latin Hypercube, (C) Median Latin
Hypercube, and (D) the Hammersley Points.

examines the number of samples that are required to con-
verge to the mean and variance for each sampling scheme.
Finally, we apply the new sampling scheme to the design
of a CSTR and illustrate the computational savings as com-
pared to using the conventional techniques such as Monte
Carlo or Latin hypercube:

3.1 Uniformity Properties of the Hammersley Points

In our discussion of different sampling techniques, we
explicate the importance of the uniformity properties of a
sampling technique when the sample is used for approxi-
mating a distribution by finite samples. Figure 3 graphs the
samples generated by different techniques on a unit square.
This provides a qualitative picture of the uniformity prop-
erties of the different techniques. It is clear from Figure 3
that the Hammersley points have better uniformity prop-
erties than other techniques. The main reason for this is
that the Hammersley sequence is a low-discrepancy design
for placing n points on a k-dimensional hypercube. In con-
trast, other stratified techniques such as the Latin hyper-
cube are designed for uniformity along a single dimension
and then randomly paired for placement on a k-dimensional
cube. Therefore, the likelihood of such schemes providing
good uniformity properties on high-dimensional cubes is
extremely small. Figure 4 illustrates the effect of imposing
a correlation structure on the sample sets. The approach
used is described in Section 2.2, which uses rank correla-
tions to preserve the stratified design along each dimension.
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Although this approach preserves the uniformity properties
of the stratified schemes, the low-discrepancy design of the
Hammersley sequence is perturbed by imposing the corre-
lation structure. The effect of this on the uniformity proper-
ties is not apparent from Figures 3 and 4; however, we will
examine this issue in detail in the following subsections.

3.2 Convergence Properties of Samplers

In this subsection, we provide a comparison of the per-
formance of the HSS technique to that of LHS and MCS
techniques. The comparison is performed by propagating
samples derived from each of the techniques for a set of
n-input variables (X;), through various functions (Y =
F(X1,Xs,...,X,)) and measuring the number of samples
required to settle down to within an error of E% (typically
we use 1%) of the “true” mean and variance of the derived
distribution for Y. We have adopted the following decision
rule for determining the convergence of a sampling tech-
nique: (1) We estimate the “true” mean and variance for
each test case by propagating a very large number of sam-
ples using Monte Carlo (50,000 samples), Latin hypercube,
and Hammersley points (about 10,000 samples). When the
techniques provide the same estimates for the mean and
variance, we accept these values as “true” values (else we
might have to increase the number of samples). (2) Once
the “true” values have been established, the performance
of different sampling techniques is compared by estimat-
ing the number of samples required to settle to within 1%

A: Monte Carlo B: Latin Hypercube
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Figure 4. Sample Points (100) on a Unit Square With Correlation of
.9 Using (A) Linear Congruent Generator, (B) Random Latin Hypercube,
(C) Median Latin Hypercube, and (D) the Hammersley Points.
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Figure 5. The Mean and Variance as a Funct/on of Sample Size for LHS (dotted line} and HSS (solid line) for Two Input Variables Without
Correlations: (A) Mean of Function 1, (B} Variance of Function 1, (C) Mean of Function 4, and (D) Variance of Function 4.

of the “true” values. This performance is also graphically
presented by plotting the calculated value of mean and vari-
ance as a function of number of samples used in the calcu-
lation. Sampling schemes that add one point at a time (such
as Monte Carlo and Hammersley sequences) typically have
less fluctuations as compared to schemes that do not retain
the original n points in generating the next one. As a result
of this, one might be misled into thinking that “retaining
schemes” have converged when in fact they are fluctuating
slowly.

To address these issues, we have chosen some test func-
tions that are analytically simple for which the “true” mean
and variance can be estimated exactly. For these functions
we will show in the following section that the calculated

values for each sampling technique converge to the true

values. This comparison also provides an estimate of the ap-
proximate number of samples required (order of magnitude)
for convergence. Additionally, to guard against underesti-
mating the number of samples required for convergence of
“retaining schemes,” we examined each of the test functions

TECHNOMETRICS, AUGUST 1997, VOL. 39, NO. 3

(and the CSTR example) using at least five times the number
of samples required for the sequence to initially settle down..
In other words, if the fluctuations in the variance estimate
using Hammersley sequence settles down around N sam-
ples, we continued the simulation up to max(5 x N, 10,000)
to examine if the estimate slowly fluctuates out of the 1%
band. This oversampling guards against underestimating the
settling time of the “retaining schemes.”

Extensive numerical comparisons of the Monte Carlo
technique with the Latin hypercube (e.g., Diwekar and Ru-
bin 1994) show that the effect of not retaining the original n
samples in generating the next sample is actuaily quite neg-
ligible as compared to that of the uniformity properties of
the sampling techniques. The Monte Carlo method retains
the n samples while generating the next sample, whereas
in LHS the n+ 1 samples are completely unconnected to n
samples generated previously. Although one might expect
this to exaggerate the fluctuations and convergence prop-
erties of the LHS scheme, numerical experiments indicate
that the fluctuations in LHS are systematically smaller than
MCS. This indicates that fluctuations in LHS are more sen-

Copyright © 2001. All Rights Reserved.
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Table 2. True Estimates
Function Mean Variance
Function 1 1.10 135
Function 4 98579 296013
sitive to the uniformity properties of the sampling technique

than to the retention of the original 7 points in generating
the next sample. This empirical observation forms the basis
of the decision rule used for estimating convergence-

Now we present results from @ large matrix of numerical
tests. The design of the test matnx included varying of the
type of function, the number of input yariables Xi the type
of input distribution, and the correlation structures between

them. The details of the test matrix are as follows:

Sampling Techniques: A total of four sampling techniques
have been compared: Monte Carlo, random Latin hyper-
cube, median Latin hypercube (which is the same as Latin
hypercube except that observations are taken at the me-
dian point within each of the n equiprobable intervals), and
Hammersley.

Figure 6. The Mean and Variance as a Function of Sample Size for LHS (dotted line) and HSS (solid line) for TWO lnpuL Var
. il

of .9 (A) Mean of Function 1,

Copyri .
pyright © 2001. All Rights Reserved

Number of Variables: The number of input variables used

was yaried betweent 2 and 10.

Functions: Five different kinds of functions were used,

as follows:

1. Function L: Linear additive gunction: Y = T X
1. Function 2 Multiplicative gunction: Y = X
2

3. Function 3: Quadratic function- Y =

4. Function 4: Exponential function: ¥ = v Xi %
eprH.l .

5. Function 5: Logarithmic function: ¥ = T Xi %
log(Xi+1)
For functions 4 and 5, the yariable X1 Wraps around t0
Xy if required. :

for the input yariables Xi-
mal, are symmetri , and

Distributions: Three types of distributions have been used
Two of them, U iform and nor-
the third 18 2 skewed distribution,

1ognormal. : ;

Correlations: Three types of correlation structures have

been used: 10€ first is a Zero correlation, and the other

two sets use 2 correlation of .5 and 9 petween the input

variables. '
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Figure 9. Variance of Rg Using LHS (dotted line) and HSS (solid
line): 1% Error Band Is Shown by Broken Lines.

two graphs that examine these differences in some detail.
Figure 7A shows the actual correlation for the LHS and
HSS sample for a desired correlation of 9. It is observed
that the actual correlation for HSS is .905 and for LHS is
-895. We find that the Monte Carlo approach also intro-
duces such a bias (not shown in figure). The appearance of
a bias in the actual correlation has been consistently ob-
served over different functions, seeds, and sample size for
all sampling techniques. (One approach for adjusting these
errors is based on trial-and-error methods in which the tar-
get correlation is perturbed to achieve desired correlations.)
This indicates that numerical techniques used in Section 2.2
introduce a bias in the actual correlation for a desired level
of correlation. The calculated mean and the variance esti-
mates of the output variable for correlated input variables
is extremely sensitive to small differences (less than 1%)
in the actual correlations in the input samples. This is il-
lustrated in Figure 7B, in which the calculated mean and
variance are plotted as functions of actual correlation. Fig-
ure 7 illustrates how numerical errors introduced in actual
correlations are propagated to the calculated mean and vari-
ance, and this in turn lies at the heart of the difference in
the converged values for mean and variance in Figure 6.
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Figure 10. Variations in the Production Rate of Component B, Before
(broken line) and After (solid line) Design for Quality.
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Figure 8 presents a more comprehensive view of the com-
parisons conducted in the numerical experiment. This fig-
ure plots the ratio of the LHS to the HSS sample size as
a function of the design parameters (outlined in the pre-
ceding matrix) of the numerical experiment. The conver-
gence sample sizes for the LHS schemes were averaged
over 10 different sample sets. The sample size used for this
comparison is the number of samples required to converge
to within 1% of the actual value of variance. Each sub-
graph plots the ratio of the sample size against the number
of input variables for the two functions (Function 1 and
Function 4) and for two types input distributions uniform
(symmetric) and lognormal (asymmetric). Once again the
results are encouraging—the HSS sampling technique has
a much faster convergence rate, anywhere from a factor of
3 to 100 and larger! The results presented here are qualita-
tively representative of the general trends observed for all
the datasets that were analyzed.

3.3 CSTR Revisited

In Section 1 we formulated the parameter-design problem
for the CSTR. In this section we present the results of non-
linear stochastic optimization applied to this problem and
subsequently compare the performance of the Hammersley
samples and the Latin hypercube samples for this problem.

The design objective was to produce 60 mol/min of com-
ponent B; that is, Rg = 60. The variance in the designed
output variable is estimated by propagating a sample set of
points from the joint probability distribution of the inputs
with errors. Because the objective from a quality-control
perspective is to minimize this variance, we characterize
the number of samples required to estimate the variance
to within 1% of its value using both Latin hypercube and
shifted Hammersley points. The Hammersley points require
about 150 points to converge as compared to 6,100 points
required by the Latin hypercube sample. Figure 9 plots the
variance as a function of number of samples. Figure 10
shows the variation in the production rate (rg) before and
after the design for quality control, where the variance is
reduced from 1,638 to 232 by merely changing the nominal
values of the parameters as shown in Table 3.

It is interesting to note some of the properties of the final
setting found by the parameter-design methodology. First
of all, the volume of the bulk mixture in the reactor is in-
creased by more than 20%, thereby adding further damping
to the system—this increased mass capacitance provides an
increased buffer between the input variations in concentra-
tions and the output production rate. Another interesting
suggested change is that the temperature (7}) of the inlet
stream is increased, which requires that we add this heat
to keep the CSTR bulk temperature (T") at about 309 K.
This results in an increased operating temperature of the
CSTR, which is locally less sensitive to inlet temperature
and heat added. Both of these changes would have some
economic impacts on the cost of running the CSTR. In a
more practical setting it might become imperative to include
Some resource constraints on the optimization in terms of
the dollars available for such improvements.

TECHNOMETRICS, AUGUST 1997, VOL. 39, NO. 3
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Table 3. Initial and Final Nominal Parameter Settings
Variables Units Initial Final
Ca, mole/m3 3,118 3,119.8
Cs mole/m® 342.0 34224
T ‘K 314 350
Q J/min 1.71 x 10° 5.0 x 108
v m® .0391 .05
F m3/min 078 .043
T ‘K 300.0 309.5
% 1,638 232

Finally, we characterize the contribution (locally) of the
various noise factors to the output variation in the produc-
tion rate, by conducting a sensitivity analysis of the integra-
tion data for the initial and final choices of the nominal pa-
rameter settings. Table 4 provides the contribution of each
noise factor to the total output variance (in % terms). This
table evaluates the explanatory power of each input variable
using a measure that provides the reduction in total (orig-
inal) variance by fixing one factor at a time at its nominal
value. The total variance in the production of component
Rp is reported in the first row. The contribution of each
noise factor has been calculated by fixing it at its nominal
value while retaining the noise in all the other factors. This
analysis has been conducted at both the initial and final set-
tings. The analysis shows that, when the variable T; and/or
Q is fixed to its nominal value, the variance is reduced sig-
nificantly both at initial and final conditions. Therefore, it
is apparent that changing the nominal value of these pa-

rameters can reduce the variance, which is also reflected in~

the results in which the optimal nominal value for these pa-
rameters goes to its bounds. Notice from Equation (1) that
the bulk temperature of the CSTR (T) is related to both Q
and T; and hence equally sensitive to both. From Equations
(2)~(5) it is clear that the production rate of B is critically
dependent on T. Note, however, that the function is highly
nonlinear and this analysis only provides a local analysis at
the two points on what appears to be a convoluted surface.
The change in volume, V, is due to this nonlinearity. The
search for a region in the parameter space with minimal
impact on the production variance necessitates this change
in volume although this variable does not locally affect the
variance in the production level.

Table 4. Sensitivity Analysis of the Noise Factors

A Variance, %

Variables Initial Final
Total 1,699.0 2320
Ca 6% 15%
Cs, 2% 1%
i 94% 52%
F 2% 23%
Q 94% 53%
v 2% 1%

JAYANT R. KALAGNANAM AND URMILA M. DIWEKAR

4. CONCLUSIONS

This article presented a new sampling technique based
on Hammersley points. This new sampling technique is
shown to have better uniformity properties, which reduces
the computational intensity of stochastic optimization prob-
lems considerably. Because Taguchi’s parameter design
method for off-line control essentially involves the solu-
tion of stochastic optimization problems, it was found that
this sampling technique is always preferred for parameter-
design problems. This is because of its high precision and
consistent behavior coupled with great computational effi-
ciency. This method was iltustrated for off-line quality con-
trol of a continuous-stirred tank.
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