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Solvent selection is an important step in process synthesis,
design, or process modification. Computer-nided malacular
design (CAMD) approach based on the reverse use of ETOUp
contribution method provides a promising tool far solvent
selection. However, uncertaintics inherent in (hese techniques
and associated todels are often neglected. This paper presants
a new approach to solvent selection under uncertainty, A case
study of acetic acid extraction demonstrates the usefulness of
this approach to obtain robuat decistons,

Introduction

Solvents are extensively used as process materials {e.g., extracting agent) or
process fluids {e.g., CFC) in chemical process industries, pharmaceutical
industries, and solvent-based industries such as coating and painting. Since waste
solvents are a main source of pollution to air, water, and =oil, it i3 desirable to
use reduced ameaunt of solvents and/or environmentally fricndly solvents without
sacrificing process performance. There are some solvents which must be
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eliminated due to environmental and health effects and reguiatory requirements.
For ezample, the Montresl protocol bans many chlorinated salvents (.

Salvent selection, an approach to generate candidate soivents having
desirable propertics, can help to handle these problems. Several methodologes
have been developed for solvent seiection aver the years (2). First approach uses
traditional Inboratory synthesis and test methodology to find Promising golvents.
‘This method can provide reliable and accurate result, but in many cases this
method can not be applied due to cost, safety, and time constraints. Second
approach is to search the property database. Although it is the most common and
simple method, it i5 limited by the size and accuracy of the database,
Furthermore, Lhese two methods may not provide the best sofvent becauss there
are huge nomber of solvent molecules to be tested or searched. Finally,
computer-aided molecular design (CAMD) can aptomatically penerats promising
solvents from their building blocks or groups {3,4), This method can generate
listz of candidate sclvents with reasonable aceuracy within moderate time scale.
CAMD can also be applicd to CFC substituents (43, solvent blend design {7,
polymer and drug design (6}, and alternative process fluid design (73, However,
CAML is limited hy the availability and reliability of the praperty estimation
methods.

All methodelagies for solvent sclection are exposed to uncertaintes that
arise from experimental errors, imperfect theoties or models and their
parameters, impropet knowledge or ignorance of sysiems, and inadequate
controls. Although uncertainties can affect the real implementation of selected
solvents, few papers in lilerature have focused on uncertainties. In this stody a
new CAMT) method for solvent selection woder uncertainty is presented &nd is
applied to generate greener soivents for acetic. acid extraction from water as a
case study.

As the ranking or priority for solvent selection in (his study is based on the
Hansen's solubility parametors, we describe solubility parameters and solvent
selection model firat. Then several sections are deveted to explain and discuss
this new CAMD method, uncertainty quantification, apd case study. Finally
aumrmry is followed. '

Hansen’s Solubility Parameter and Solvent Selection Model

The solbility parameter, & is one of the most impartant parameters in
physical chemistry and thermodynamics of solutiens. It can serve as a key
parameter for solvent selection, solubility estimmation, and the estimation of
polymer swelling (8). Though it was orginally inFoduced by Hildebrand and
Scott (7}, the most common one is Hensen's three-dimensional solubility
parameter (10) which is given by:
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82 =87 +67 +67 (unit:MPa) 1 (1)

where J; is the dispersive tarm, &, is the polar term, and &, is the hydrogen
bonding term. The solubility parameter () and its three terms {4, d,, and &) can
be determined by semi-empirical methods and are tabylated by Barion (11 for
most commen liquids.

Miscibility of two liquids 4 and B depend on the heat of mixing Affpg,, and
AHf g, i the Hansen theory iz given by the following equation.

AH gy = (ng Vg +npVg B2 - 55)2 +B) 5N (81 -2 Iy, )

where n is the number of moles, V is the maolar volume, and @ is the volome
fraction. When the heat of mixing approaches to zero, two liquids A and B are
soluble or miscible with each other. Hence the three solubility paramoter terms
should be close to minimize the heat of mixing.

Crenerally speaking, solubitity parameters for solvent selection are not as
accurate as ather property estimation mothods such as infinite dilution activity
coefficients (). Bul satobility parameter method is universal and siple to
apply, and thus can be used for guiding and sereening candidate solvents with
relatively acceptable nocuracy.

To replace the current solvent or destgn new solvents, there are several
criteria are used. These are (z) distribution coefficient (), (b) solvent selectivity
(M, (c} salvent loss (5r), (d) physical properties such as betling point, flash
point, density, and viscosity, (&) chemical stebility, (f) toxieology, and (g) cast.
For extraction pracess, the finai selection of solvents will generally be darinated
between i and 8. Distribution coefficient {m), B measure of solvent capacity, is
defined as:

2
moc| JUR | MWR (3
iy I\-‘IWS

where R, U, and § are raffinate, solute, and solvent, respectively. MW is
molecular weight rm and rys are Euchdean distance metric between two
malecules and are defined as follows:
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(4

Liquids having similar solubility parameters are soluble or miscible with each
other. The distance between solute and solvent {ry5) should be small while the
distance between solute and vaffinate (rym) is fixed for a given solnte-raffinate
system. Thus salvents having smaller 7y can increase m, and high m reducas the
size of an extracting equipment and the amount of recyeling solvent.

Solvent selectivity (), the ability of the solvent to selectively dissolve
solute, ig the ratic between distribution coefficients of solute and raffinate, and
defined by:

2
A= ny | fes ) MWy ' (5)
HIp Fi1g MWR

where rrs i defined in a stmilar way, High #reduces the cost of solute recovery
a3 solvent is highly selective to solute. Solvent loss (5p) can be expressed by the
foliowing equatian;

)
5y | 2] 220 ®
rsr | MWy

Low 5. means high selectivity toward solute and determines immiscibility
between solvent and raffinate.

Tabie i shows the Hansen's three-dimensional solubility parameters and
estimated solvent properties (m, 8, and 573 In this example, acetic acid is a
solute, water is a raffimate, and ethyl acetate i5 & current solvent. The aim of
solvent selection is to generate solvents having better solvent properties than the

Table 1. The Hansen's solubllity parameters and solvent propertics,

Sofvent Bz &, 8y Properties  Values
Acetie actd 13.9 122 189 s [.043
Water iz.2 22.8 404 i) 35.20
Ethy] acetate 13.4 B.60 B.90 S 0.0041
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curTent solvent.

Computer Aided Molecular Design Under Uncertainty

Group contrihution method is a forward problem; if we know a molecule,
we can estimate its physical, chemical, biological, and health cffect propertes
based on its groups or building blocks (Figure 1a). However, CAMID) is a
backward prahlem; if we knew desirable praperties or regulation Yimits, we can
find molecuics that satisfy these propertics ar limits by constructing groups
(Figure ib}. CAMD approach, though not as accurate as experimentation, can
generally provide satisfactory results from large scale combinations of ETOUpS,

t&) tel]

Mode] Parameatars Maodel Parametars

Propartias
%-—h MODEL |—= Fropertles ? | MODEL (%= b eauiation fmils

Fignre 1. Forwardial and backward(r) problens.

In group contribution methods groups or buildmg blocks are uniguely
designed to pemerate any possible solvent molecules, end properties of each
group can be theoretically calcuiated, experimentally oblained, or statistically
regressed. From a set of groups, all possible combinations of groups can be
made to generate molecyles, Once molecules are generated, desired properties of
the molecules are predicted based on the properties of their groups and tested if
they satisfy the pre-specified eriteria. If the generated-and-tested moiecules have
desired properties, they are stored and sorted according to predetermined
priorities. Thiz eommon CAMD approach is called a generation-and-test
approach {3 4).

Besides the generation-and-test method, mathetmatical optimization methads
(6,72-14) are vsually applied to solve this reverse problem. Hawover, the
optimization methods used in these earlier studies are not designed to inclede
uncertainties which can be a major computational bottieneck for the large-scale
stochastic combinatorial optimization problems. Here in this paper we are using
a combinatorial aptimization algorithrs specialiy designed to efficiently handle
combinatorial optimization problems under uncertainty {/5,15). Figure 2 shaws
a simple representation of this approach. This approach involves twa recursive
loops; the outer optimization loop and the inner sampling loap. Tn this approach
the optimizer not anly determines the real decision variables like the number of
groups in a solvent molecule, group indexes, but also the number of uneertain
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Figure 2. An optimization framework for solvent selection under uncertainty,

satnpler needed for the innet sampling loop. The inner sampling loop cesentially
ennverts the deterministic group contribution model into a steichastic model,
Stochastic modeling involves four steps: {a) identifying and specifying key input
parameter uncertainties in terms of probabilistic disttibution fanctions, (b
sampling these distibutions in an iterative fashion, (¢) propagating the effects of
these unecrtainties through the model, and (d} analyzing the ouiput usinp
statistical technigques.

Total 17 proups and their properties used in this study ave shown in Table 2
for estimating solubility perameters. Ome of the authors (Joback) determined the
three solubility parameter terms using the least square method frat the literature
data (ff). In this tzble, each column consists of group specific solubility
parametera and intercept values. The solubility parameter can he estimnated by
lincarly adding proup properties. For example, ethyl acetate {(CH,-CO0-CHy
CH;) has three distinctive groups, and itz dispersive solubility parameter term is
estimated fo 13.38 MPa'? (2x0.344+0.268-0.862+13,290). Its polar and
hydrogen bonding terms are similarly 8.24 and 8,95 MPa'", respectively. The
literatore values for &8s, &, and & are 13.40, 8.60, and 8.90, respectively, and we
can see that estimated and literature data are very close.

The set of groups in Table 2 is specially designed for linesr or branched
hydrocarbons while aromatic, cyclic, andfor helogenated compounds are
eliminated due to etviroomental concerns. As described earlier, one of the
features of snlubility parameter method is universality: we ean uge the sama
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Table 2. Salubility parnmeters of groups.

roups Dirpersive Polar Hydropen-bonding
-CH; 0.344 -0.591 -1 848
-CH-- 268 -0.377 -0.505
>CH- -0.142 -LB01 -1.172
=0 =113 -1.039 -2.406
CH-=CH- -i.163 -1.039 -2.494
CH.=C ~(L243 arrs -1.342
-CH=CH- -0.568 <0.0334 00776
-CH=Cx -0.595 0.529 -3,175
»0=Cx 0.823 -1.025 -1.574
-0H -0.648 53.548 10.630
-0 -0.638 2.315 1.804
=C=0 -1.145 4.670 4. 486
O=CH- -1.114 5012 5.256
CO0H 1.0R3 . 6942 11120
L200- -0.862 4,720 4.012
=NH -1.074 3875 2,772
LN -1.628 a.904 8317
Intercept £3.200 5.067 7.220

croups for estimating other properties such as boiling point {7, and thus there
is no need to have another group set.

4. Uncertainty Identification and Quantification

The Hansen solubility parameters of liquid molecules are estimated by semi-
empirical methods, and the three solubility parameter terms for gach group aro
regressed using the least square method. Table 3 shows some estimation errors
of the Hansen's three-dimepsional solubility parameters. For example, ethanol is
shawing 15% relative error in the solobility perameter mainly due o the crror in
the &, term. Estimated solubility parameters of ethyl acetate are quite closs to the
literature values, which iz also shown in Table 1. For diisobub?! ketone, we can
find an interesting vesult, Though each solubility parameter term has large
discrepancy, the resulting total solubility porameter is closer to the value
reporied in the literature. What is important in this siudy iz 1o quantify
uncertatnty in each solubility parameter term, not the uncertainty in total
solubility parameter, that governs miscibility of two liguids as shown ineq 2.
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Tahle 3. Example calculations of Hangen’s solubility parameters,

Ethanel Ethyl acetare Diieabutyl ketone
Li. Est  Argd | Lit  Est.  Arg) | Lin  Est. Ar%)
8 | 126 117 74 [134 134 01 | 145 138 50
g | 112 87 139 | B6 82 42 [ 68 50 262
G, [ 200 164 -175 | 89 30 0.6 g 52 30
6 | 262 223 -145 (182 181 -09 | 155 155 5%

The group contribution method in this study has 17 groups as shown in
Table 2 and each group has three solubility parameter terms, Since the total
uncertainty distributions are 51, it i3 impractical and statisticaily insignificant to
figure out each uncertainty distribution. Instead, the uncertainties of the Hansen
slubility peramctars (&, &, snd &3 of a Ngutd moleculs are aalyeed mG
quantified in terms of a new parameter called [ncertainty Factor (UF). We
define Uncertainty Factor (UF) as the ratie of the literatmre sofobility parameter
(1) ter the estimated solubility parameter using the group eontribetion method.,

UF=ﬂxmﬂ (%5} (7)
Jcst

where the UF can be applied to dispersive, polar, or hydrogen honding terms.
Nate that the UF of 100 % means that the estimated value is exactly same to the
literature value.

In arder to elicit the UFs, the estitated solubility parameters of 66 non-
eyelic and non-aromatic compounds are eompared with the literamre valves, The
probabilistic distributions of the three UFs associated with the three solubiticy
parametess are shown in Figure 3. The UF of the dispersive term (4, is normally
distributed with 105.4 % mean and 8.3 % standard deviation. The UFs of J, and
& are normally distributed with 121.4 % mean and 128.1 % standard deviation

) 11':|n 1:;‘3 140 =500 {': 00 1000 -ﬁm zm G 200 400
&4 umcoriainty factor {36} &p unoortainty facior (%) fiy, Lncertainty faolor (%)

Figure 3. The UF: for dispersive, polar, and hydrogen bonding terms.
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and 84.5 % mean and 95.5 % standard devialion, respectively, From this figure,
we can see that the effect of uncertainty on & is not stenificant ns compared o
the effects on the polar term (&) and the hydrogen bonding term (&), Therefore,
we can say that UF increases estimated d, and decrcases estimated &, , and the
resulting &, e, 8, and 5p are subject to change.

Case Study: Solvent Selection for HOA ¢ Extraction

Acetic acid is commonly used as a process salvent or is produced 3 4
byproduct. Therefore, acetic acid is a pollutant as well as & valuahle solvent, and
it is desirable to minimize the discharge of acetic aeid to the environment. To
recycle or remove acetic acid from process streams or process units, extraction
process is generally applied. For extraction, we can either use high boiling
solvents {/8,79) or low boiling solvents (), Ethyl acetate, isoamy! acetate, and
isoprapyl acetate are widely used in industries to extract acetic acid. This study
is mainly focused on finding candidate solvents having low boiling peints.

The generation-and-test CAMD approach is usually computer-intensive ns
this method tries to generate all possible molecular combinations, If the
maximum number of groups in a molecule, for example, iz 12, then the total
number of possible moleetlar combinations are 17'% (5.8x10"). Tn addition, if
we consider uncertaintics on the solubility parameter terms of prowps, this
problem becomes computationally expensive.

In order to reduce compuiational burden and guarantes best candidate
golvents, a discrete stochastic optimization method iz implemented (25, Iay as
shown in Figure 2, The oplimizer in the upper loop determines the number of
groups (VG in a solvent malecule, group indexes (A7S), i=1, ..., MG that tells
which groups are present in a propased solvent, and the number of uncertain
samples {(Mump). The information about the distribution functions in tetms of
0.1% and 92 9% quantiles is supplied to the inner sampling loop. This sampling
loop then uses an efficient sampling method (200 to gencrate the uncertain
samples. Each sample {5 propagaled through the model based on the group
cantribution methed to evaluate the expected values of distribution coefficient,
solvent selectivity, and boiling paints of each eomponent. This information is
transferred to the optimization loop as the obfective function and constraints.
The optimizer determines whether or not the probabilistic results of the given
malecule are optimal.

The main priority (objective function) of solvent selection is distribution
coefficient, while the other properties sre vsed as constrajnts that are
sumirnarized in Table 4. The number of groups (MG in a solvent molecule spans
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Trhble 4. Experimental conditlons for solvent selection under mrcertainty,

Paramerar Bounds
No. af groups in a solvent (NG 212
A (solvent selectivity) £=21743
Sz (golvent [oss) g = 0.0045
Boiling point (°C) 47 -~ 108

from 2 to 12, The bounds of J, St, and boiling points are based on the vales of
ethyl acetnte that is one of common solvents for acetic actd exiraction,

Table 5 shows the top 20 candidate solvents of the deterministic and

stochastic eases. For the deterministic case, the first 10 solvents are aleohols and
the remaining solvents are mostly aldehyde, Some of the promising 2olvents in
this case are ethyl alcohol (No. 1), propyl aleohal (Ne. 33, isaprony! alcohol
(Na. 3}, acetonc (Mo. 12, and methyl eth¥l ketone (Mo. 16). The alcohol
function gronp has the largest hydrogen-bonding term and the second largest

Table 3. Top 20 candidate snlvents,

Deterninistic case Stochastic case

No Solvent fii] Ne aolvenr o]
1 {H,,CH.,,0H 721 1 3CH,CHLOO 141
2 CH,CH=CHOH 126 | 2 20CH,CH=C,C0 201
3 CHy2CH,;0H 250 | 3 2CH,CHOH 395
4 CH=CHOH 834 | 4 CH,CH,CH=CHCOO 491
5 Z2CH;CHDH 606 | 53 2CH.COO 426
& {CH=CH,2CH, 0H 583 | 6 CH.2CH,OH 300
7 CH,CH;=C,0H 520 | 7 CH,CH,OH 353
8 CH=CH,2CH.0OH 3.8 | 8 2CH,CO0 351
9 CH, CH=C,CH,0H 341 | 9 2CH,CH,=CH,OH 3,38
10 CH. CH,=CH,CH,OH 278 | 10 CH,CH2=CH,OH 134
IT CH,; CH=CH,CHO 207 | 11 2CH, CH=C,CHO 2.5
12 2CH,C0 206 | 12 CH=CH,OH 277
13 CH32CH, CHO i1.23 | 13 CH,CH=CH,OH 2.58
14 CH,CH,CH=CH,CHO 130 | 14 CH,2CH, CHO 2.40
15 2CH, CIL,CHO 147 | 15 2CH;CH..C0 216
6 2CH,CH.,CO [4d4 | 16 CH,CH,=C0H 2.10
17 CHy=CH,CH2,.CHO 142 | 17T 2CH;CH, CH=CH,O 2.00
12 20H,C00 132 | 18 Z2CH, CH=CH.CO 2.01
1% CH, 3CH.CHO 1.33 | 19 2CH;CH=C.CO0 1.86
20 CH, CH.=C,CH{ 1.22 | 20  2CH,CH,.CH CHO i85
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polar term. This feature of the OH group decreases rys. resulting in an incrense
of m. Similarly the CHO group has the second lorgest hydrogen-honding tarm
and the largest polar term which also decrease iy, Large difference in bydrogen-
bonding terma between OH and CHO proups (10.63 va 3.26) and small
difference in the polar terms (3.55 vs. 5.92) make alechals preferred solvents
Tor acetic acid extraction,

However, the stochastic case provides n different set of candidate solvents.
Only 13 of the solvents generated at the deterministic case are appeared in the
list of the stochastic case (Sec bold numbers in both calumnsl, Some of
promising solvents are fsopropy! acetate {Ne. 1), isopropyl alcohal (No. 3,
acetons (No. 3), and propy} alecho! (Ne. 6). Isopropyl acctate that is not listed in
the top 20 solvents for the determimistic case, iz one of the commen industrial
solvents for acelic acid extraction and is proved to be highly seleetive for this
extraction purpose. Acetone hat is appeared in both cases i3 reported as the best
solvent for this purposs by Joback and Stephanopoulos (4). They also used the
satubility parameter method and similar constraints even thongh their CAMD
epproach was the generation-and-test method, The combinatorial optimization
method used in this study provides more promizsing solvents than acetone. Ethyl
acctate, one of the common industrial solvents, is generated outside the top 20
candidate solvents at both cases since the m for ethyl acetate (1.04) is relatively
low.

Because the mean value of the uncertainty factor of & is 84.99%, the
contribution of the hydrogen-bonding term decreases in the stochastic case and
results in solvents having various functional groups. In addition, the reduced &,
term also decreases the resulting distribution cocificients. IF we look at the
distribution eoefficients of solvents generated in both cases, the expected volue
of s under uncerininty is slightly smaller than that of the deterministic case,

Figire 4 shows frequencies of top 40 candidate solvents in both cases. For
the deterministic case, as expected, OH and CHO proups are the most commen
types in the candidate solvents. However, for the stochastic case, other functional
groups also have high frequencies, and alkanes and alkenes are in the Vst of
optimal solvents. This means that the stachastic case provide wider range of
solvents.

Frobabilistic density functions (pdfy of distribution eoefficlents for both
cases are shown in Figure 5. The pdf for the deterministic case is lognarmally
distributed while the one for the stochastic case is governed by the Weibull
distribution with the shape parameter of 1.51 and the scale parameter of 2.58.
The Weibull distribution is one of the asymptotic distributions of general
extreme value theary; hence, this distbution can approtimate the extremely
high value of m of isopropyl acetate under uncertainty. We can alsc conclude
from this figure that the pdf of the stochastic case is narrower and showing
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Figure 4. Frequencies of functional groups (ALK means alkanex and atkenes).
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Figure 5. Probabilistic density finctions of the distribution coefficient fr).

robustnass in the solvent selwetion process. The rednced &, and the resulting
smaller aq can be antributed to this nammow peak of candidate solvents.

For real implementations of CAMD results, solvent selection and its process
application {e.g., extraction process) should be simultaneocusly integrated. Tn
addition, objectives such as process economics, performance, and environmentai
impacts should be considered. This results in = complex multichjective
aptimization programming and represents the current foeus for the authors,
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Summary

This paper presents a new combinatorial optimization approach for CAMD
under uncertainty, CAMD in this study is based on the group contribution
method of the Hansen's three-dimensianal solubility parameters. We have used
experimental results to quantify umcertainties. A new parameter called
uncertainty factar, UF is intraduced to quantify uncertainties in the solubility
parameter. A real world case study for solvent seleetion for acetic acid extraction
from water is presented to {llusirate the approach. For deterministic case,
solvents such as ethyl aleshs!, propyl aleshol, isopropyl alcohol, acetone, and
methyl ethyl ketone are penerated. However, under the stochastic cras, a
different set of solvenis such as isopropyl acetate, isoprapyl alcohol, acetone,
and propyl aicohol are penerated, The uncertainty case also identified a
coramonly used industrial salvent as an impartant splvent that was not in the top
list in the deterministic studies. The analysis showed that the uncertainty results
provide wider selection window and robustness in solvent selection. This
combinatorial optimization method can mlso provide more promising solvents
than the generation-and-test methad,
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