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This paper presents hierarchical improvements to combinatorial stochastic annealing algorithms using a new and efficient sampling
technique. The Hammersley Sequence Sampling (HSS) technique is used for updating discrete combinations, reducing the Markov
chain length, determining the number of samples automatically, and embedding better confidence intervals of the samples.
The improved algorithm, Hammersley stochastic annealing, can significantly improve computational efficiency over tradi-
tional stochastic programming methods. This new method can be a useful tool for large-scale combinatorial stochastic pro-
gramming problems. A real-world case study involving solvent selection under uncertainty illustrates the usefulness of this new

algorithm.

1. Introduction

Optimization under uncertainty refers to that branch of
optimization problems where there are uncertainties in-
volved in the data or model, popularly known as sto-
chastic programming problems. Stochastic programming
gives the ability to optimize in the face of uncertainties
and requires that the objective function and constraints
be expressed in terms of some probabilistic representation
(e.g.. expected value, variance, fractiles, or most likely
values). The general way to treat the probabilistic func-
tional of the objective function and constraints is to use
stochastic models instead of deterministic models in the
problem formulation. Thus a stochastic optimization
problem. where there are decision variables and uncertain
parameters, can be viewed as;

(P1) min z = P[f(x,&)],
subject to  P[h(x, &)] = 0,
P3[g(x‘§)] S 01

xeX, EeE, (1)

where X is a vector of decision variables, and & is a vector
of uncertain parameters of the domain Z. The perfor-
mance metric to be optimized is represented by a prob-

abilistic function P, and the model equality and
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inequality constraints are defined by a set of probability
functions P, and P, respectively. If F; is the expected
value. the above optimization problem becomes:

(P2) minz = E¢f(x, &), (2)

where E¢ is the mathematical expectation with respect to
¢. The optimal solution and optimal value of problem
(P2) are x* and z*, respectively. The main difficulty of
stochastic programming stems from evaluating the un-
certain functions and their expectations. A generalized
method to propagate the uncertainties is to use a sam-
pling method. A common method is to propagate Neymp
samples generated from the random values of & and op-
timize the following approximated problem:

Nsﬂmp

> fx,E). (3)

samp =

(P3)

min z =

Similarly, the optimal solution and optimal value of this
approximation problem are X and z, respectively.

To solve this approximated stochastic approximation
problem, the optimization and sampling technique for &
are performed simultaneously. Thus the generalized sto-
chastic framework for solving optimization under uncer-
tainty problems involve two recursive loops: (i) the inner
sampling loop; and (ii) the outer optimization loop. For
example, sampling is embedded into the L-shaped meth-
od, which is an approximation of the nonlinear term in the
objective function of stochastic programming problems
(Dantzig and Glynn, 1990; Hingle and Sen, 1991).
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In the sampling loop, MCS (Monte Carlo Sampling), a
pseudo-random number generator, has been commonly
used for representing &. Even though MCS generates in-
dependent and random samples of a given probability
distribution, it is known that MCS requires a large number
of samples, Ngmp, to approximate the “true” mean or
variance. Decreasing distance between the true and ap-
proximated optimal solutions [x* — x|, therefore, increases
Ngmp and results in a high computational intensity. To
reduce the computational burden of stochastic program-
ming problems, one can use either decomposition methods
with sampling (Dantzig and Glynn, 1990; Higle and Sen,
1991; Shapiro and Homem-De-Mello, 2000) or efficient
sampling methods. However, most of the decomposition
methods require convexity conditions and dual-angular
structures, and are only applicable to problems involving
continuous decisions. The area of discrete optimization
problems, the focus of this paper, contains computation-
ally intensive stochastic programming problems.

Recently. a new guasi-random sampling technique re-
ferred to as Hammersley Sequence Sampling (HSS) has
been proposed (Hammersley, 1960; Kalagnanam and
Diwekar, 1997), that it has been shown to exhibit a better
homogeneity over the multivariate parameter space.
Further, for this new sampling technique, it is found that
the number of samples required to converge to the dif-
ferent performance measures (such as mean, variance, or
fractiles) of an output random variable, subject to input
uncertainties, is lower than the crude MCS or the vari-
ance reduction techniques such as Latin Hypercube
Sampling (LHS) (Iman and Conover, 1982). This rapid
convergence property of HSS has important implications
for stochastic programming, suggesting that precise esti-
mates of any probabilistic function evaluations are
achievable by taking a smaller sample size. These uni-
formity and faster convergence properties of HSS can be
used for the outer optimization loop as well as the inner
loop to achieve better computational efficiency with the
stochastic programming problems involving discrete de-
cision and continuous decision variables.

Simulated Annealing (SA), a probabilistic method
based on ideas from statistical mechanics was developed
by Kirkpatrick er al. (1983), and is applied to combina-
torial optimization problems. In recent years, a new vari-
ant of SA called STochastic Annealing (STA) (Painton
and Diwekar, 1995; Chaudhuri and Diwekar, 1996, 1999)
was designed to efficiently optimize a probabilistic objec-
tive function (P4) by automatically selecting the number of
samples needed to approximate the uncertain surface. By
adding a penalty term to (?3), the STA can trade-off be-
tween solution efficiency and solution accuracy.

] N,-.'.-unp

Zf(x,::f') + (penalty term). (4)

min z =
Nsamp =1

(P4)

where the penalty term is described in Section 3.2.
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This paper focuses on improving the computational
efficiency of the SA-based algorithms. The probabilistic
nature of these SA-based algorithms is the basis of the
hierarchical improvement presented in this paper. Hier-
archical improvements of stochastic annealing for re-
ducing computational intensity are achieved by using a
new efficient sampling technique, HSS, both in the inner
sampling and in the outer optimization loops. New im-
proved SA-based stochastic programming algorithms are
summarized in Table 1. In SA and its variants, each
configuration that is a set of discrete decision variables is
randomly generated from the previous configuration, and
this update is generally based on a random probability
given by a uniform distribution of the neighboring con-
figurations. Because it is known that this probability can
significantly affect the overall efficiency of annealing
process (Van Laarhoven and Aarts, 1987), ESA (Ex-
tended Simulated Annealing) aims to improve this gen-
eration mechanism by using the wniformity property of
HSS. The ESTA (Extended STochastic Annealing) algo-
rithm not only improves the generation mechanism but
also reduces the number of samples required in the inner
sampling loop by using the faster convergence property of
HSS. Finally, HSTA (Hammersley STochastic Anneal-
ing) applies an accurate confidence interval of the samples
to the ESTA algorithm.

A real-world case study involving a solvent selection
problem commonly encountered in pharmaceutical and
chemical industries is presented to illustrate the usefulness
of this HSTA algorithm. In this study, we have applied
HSTA to a solvent selection problem under uncertainty
whose aim is to find the best promising solvents with
desired properties. All possible solvent molecules are
generated by constructing their building blocks or
groups, and their chemical and physical properties are
estimated. HSTA is used to select groups to form mole-
cules, impose uncertainties on property estimation
methods, and determine whether or not the probabilistic
objective functional is optimum.

This paper is structured as follows. Section 2 describes
the generalized stochastic models involved in stochastic
programming problems. Section 3 explains and demon-
strates hierarchical improvements in the SA-based algo-
rithms. Solvent selection under uncertainty is presented as
a case study in Section 4. The last section concludes the
paper.

Table 1. Three-level efficiency improvement in stochastic opti-
mization

Level Algorithm Improvement targeis

I ESA Optimizer (SA)

11 ESTA Optimizer (SA) + Sampling technique
111 HSTA Optimizer (SA) -+ Sampling

technique + Confidence interval
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2. Uncertainty propagation and sampling

This probabilistic or stochastic modeling procedure in-
volves: (i) specifying the uncertainties in key input pa-
rameters in terms of probability distributions; (ii)
sampling the distribution of the specified parameter in an
iterative fashion: and (iii) propagating the effects of un-
certainties through the process flowsheets and applying
statistical techniques to analyze the results.

2.1. Specifying uncertainty using probability distributions

To accommodate the diverse nature of uncertainty, dif-
ferent distributions can be used for the uncertain pa-
rameters &. Some of the representative distributions are
uniform, triangular, normal and lognormal distributions.
The type of distribution chosen for an uncertain variable
reflects the amount of information that is available. For
example, uniform and log-uniform distributions represent
an equal likelihood of a value lying anywhere within a
specified range, on either a linear or logarithmic scale,
respectively. The normal (Gaussian) distribution reflects a
symmetric but varying probability of a parameter value
being above or below the mean value. In contrast, the
lognormal and some triangular distributions are skewed
such that there is a higher probability of values lying on
one side of the median than on the other. The beta dis-
tribution provides a wide range of shapes and is a very
flexible means of representing variability over a fixed
range. Finally, in some special cases, user-specified dis-
tributions can be used to represent any arbitrary char-
acterization of uncertainty, including the fractile
distribution (i.e., fixed probabilities of discrete values).

2.2. Sampling techniques in stochastic modeling

Once probability distributions are assigned to the uncer-
tain parameters, the next step is to perform a sampling
operation from the multi-variable uncertain parameter
domain. Alternatively, one can use analytical methods to
obtain the effect of uncertainties on the output. These
methods, however. tend to be applicable to special kinds
of uncertainty distributions and optimization surfaces
only. The sampling approach provides wider applicability
and is discussed below.

2.2.1. Monte Carlo technigque

One of the most widely used sampling techniques is the
Monte Carlo sampling technique, which is based on a
pseudo-random number generator to approximate a uni-
form distribution (i.e., having equal probability in the
range of zero to one). The specific values for each input
variable are selected by inverse transformation over the
cumulative probability distribution.

The main advantage of Monte Carlo methods lies in
the fact that the results from any Monte Carlo simulation
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can be treated using classic statistical methods because of
the randomness and independence of generated samples.
Results can thus be presented in the form of histograms,
and methods of statistical estimation and inference may
be applied. Nevertheless, in most applications, the actual
relationship between successive points in a sample has no
physical significance. Hence, the randomness/indepen-
dence for approximating a uniform distribution is not
critical (Knuth, 1973). Moreover, the error of approxi-
mating a distribution by a finite number of samples de-
pends on the distribution properties of the sample used
for U(0,1) rather than its randomness. Once it is ap-
parent that the uniformity property is central to the de-
sign of sampling techniques, a constrained or stratified
sampling technique such as Latin Hypercube Sampling
(LHS) becomes appealing (Morgan and Henrion, 1990).
LHS is one form of the variance reduction technique and
is widely used in risk and decision analysis literature.

2.2.2. Latin hypercube sampling

Latin hypercube sampling (Iman and Conover, 1982) is
one form of the stratified sampling technique which can
yield more precise estimates of the distribution function.
In LHS, the range of each uncertain parameter Z=; is
subdivided into non-overlapping intervals of equal
probability. One value from each interval is selected at
random with respect to the probability distribution in the
interval. The Nymp values thus obtained for Z; are paired
in a random manner (i.e., equally likely combinations)
with Ngmp values of Z5. These Nymp values are then
combined with Ngmp values of Z3 to form Ngmp-triplets,
and so on, until Ngmp k-tuplets are formed. The main
drawback of this stratification scheme is that it is uniform
in one-dimension, but does not provide the uniformity
property in a k-dimensional hypercube.

2.2.3. Importance sampling

Stratified sampling techniques ensure that more samples
are generated from high probability regions. On the other
hand, importance sampling techniques guarantee full
coverage of high consequence regions in the sample
space, even if these regions are associated with low
probabilities. This makes importance sampling tech-
niques problem-dependent.

2.2.4. Hammersley sequence sampling

Recently, an efficient sampling technique, called Ham-
mersley Sequence Sampling (HSS) and based on Ham-
mersley points, has been developed by Kalagnanam and
Diwekar (1997), which uses an optimal design scheme for
placing Nemp points on a k-dimensional hypercube. This
scheme ensures that the sample set is more representative
of the population, showing better uniformity in the multi-
dimensional uncertain surface, unlike Monte Carlo, Latin
hypercube, and its variant, the Median Latin hypercube
sampling techniques (Kalagnanam and Diwekar, 1997).
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Fig. 1. Sample points (100) on a unit square using: (a) crude Monte Carlo sampling; and (b) the Hammersley sequence sampling

technique.

Figure 1(a and b) shows samples generated by different
sampling techniques on a unit square and provides a
qualitative picture of how uniform the samples are. It is
clear from Fig. 1(a and b) that HSS has a better unifor-
mity property compared to the other sampling tech-
niques. The main reason for this is that the Hammersley
points that are one of the minimum discrepancy designs
provide an optimal design for placing Ngmp points on a k-
dimensional hypercube. In contrast, stratified techniques
such as the LHS technique are designed for uniformity
along a single-dimension and then randomly paired for
placement on a k-dimensional cube. Therefore, the like-
lihood of such schemes providing a good uniformity
property on high-dimensional cubes is small.

The better uniformity property of HSS results in faster
convergence to the “true™ mean, variance, or fractiles of
a function with multi-dimensional uncertainties. Since
there are no analytic approaches (for stratified designs) to
calculate the number of samples required for convergence
to the “true” mean or variance, Kalagnanam and Diwe-
kar (1997) conducted a large matrix of numerical tests
and established that the HSS technique is at least three to
100 times faster than the MCS and LHS techniques and
hence is a preferred sampling technique for uncertainty
analysis as well as stochastic programming (Chaudhuri
and Diwekar, 1999). This same uniformity property of
the Hammersley sequence can be used to systematically
improve the efficiency of the simulated annealing-non-
linear programming-based framework for optimization
under uncertainty and is presented in the next section.

3. Hierarchical efficiency improvement
The hierarchical improvements to the SA-based algo-

rithm for discrete optimization under uncertainty is de-
scribed below. These improvements are at three levels: (1)

the inner sampling loop; (ii) the outer discrete determin-
istic optimization loop; and (iii) the interaction between
the optimization and the sampling loops.

3.1. Extended Simulated Annealing (ESA)

Simulated annealing is a probabilistic method for com-
binatorial optimization problems based on ideas from
statistical mechanics. The analogy in SA is to the be-
havior of physical systems in the presence of a heat bath:
in physical annealing, all atomic particles arrange them-
selves in a lattice formation that minimizes the amount of
energy in the system, provided the initial temperature is
sufficiently high and the cooling is carried out slowly. At
each temperature T, the system is allowed to reach ther-
mal equilibrium, which is characterized by the probability
of being in a state with energy H given by the Boltzmann
distribution function:

. 1 1 B
Pf'(H) :Eexp (—E?). (5)

where 1/Z is a normalization factor and kg is the Boltz-
mann’s constant (1.3806 x 1072* J/K). Furthermore,
at ecach temperature level, the system should follow
Markovian moves where the next move is only dependent
on the current one, not the previous ones.

In SA, the objective function (usually cost) becomes the
energy of the system, and the goal is to minimize the
energy. Simulating the behavior of the system then be-
comes a question of generating a random perturbation
that displaces a current “particle” (moving the system to
another configuration). If the configuration S represent-
ing a set of discrete decision variables that results from
the moves has a lower energy state, the move is accepted.
However, if the move is to a higher energy state, the move
is accepted according to the Metropolis criterion that is
given by Van Laarhoven and Aarts (1987) to be:
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accepted if Pryceept < Ajj
{exp( A”) ifAH =H;,—H; >0,

‘ Vi, j€eS,
| otherwise,

(6)

where A;; is the acceptance probability for generating
configuration j from i. The uphill moves can be accepted
if a random probability (Pryceept) 18 less than or equal to
the 4;;. Hence, the Metropolis criterion implies that at
high temperatures, a large percentage of uphill moves are
accepted. However, as the temperature gets colder, only a
small percentage of uphill moves are accepted. Note that
these uphill moves are not allowed in conventional local
optimization algorithms. After the system has evolved to
thermal equilibrium at a given temperature, then the
temperature is lowered, and the annealing process con-
tinues until the system reaches a certain “freezing” tem-
perature determined a priori. Thus, SA combines both
iterative improvements in local areas and random jum-
pings to help ensure that the system does not becomes
stuck in a local optimum.

As SA is a probabilistic method, several random
probability functions are involved in this procedure. 4;;
represents the acceptance probability, and one or more
generation probabilities G;; are used to generate subse-
quent configurational moves. It is known that the effi-
ciency of the annealing algorithm is affected little by the
use of different probability distributions of Pryccep (Van
Laarhoven and Aarts, 1987). However, Gj; for generating
configuration j from i at each temperature can signifi-
cantly affect the overall efficiency of the annealing pro-
cess. The cooling schedule is strongly dependent on Gy if
the cooling is fast, then Gj; should cover a wider range of
the configuration space at each temperature level. Gen-
erally G;; is a random probability given by the uniform
distribution within the neighborhood. Thus recent re-
search efforts for SA improvement have been focused on
modifying or changing Gj;. These new simulated anneal-
ing algorithms differ mainly in the choice of G;; and the
cooling schedule (Salazar and Toral, 1997). Among the
proposed simulated annealing variants, Fast Simulated
Annealing (FSA) (Szu and Hartley, 1987) and Hybrid
Simulated Annealing (HSA) (Salazar and Toral, 1997)
are worth mentioning. Gj; in FSA has a Gaussian-like
peak and Lorentzian long tails which can make an oc-
casional long jump from the current configuration to
increase the speed of annealing. However this G;; cannot
guarantee uniform coverage of the moves over the con-
figuration surface. HSA applies the Hybrid Monte Carlo
method to obtain Gj; in which the design variable x and a
Gaussian-like auxiliary momenta p are mapped using
Hamilton’s equations of motion. The acceptance proba-
bility is similar to the Metropolis criterion, but the energy
difference AH is replaced by the Hamiltonian function
difference A.#'(x,p). Although this algorithm is found to
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be very fast, HSA requires an evaluation of the derivative
of the objective function, —af(x)/dx;, for mapping and
hence this destroys one of the advantages of the standard
simulated annealing algorithm (that SA does not require
derivative information).

The G;; generation of the current annealing algorithms
rely on pseudo-random number generators like the crude
MCS which can result in randomly clustered moves over
the configuration surface as shown in Fig. 1(a). There-
fore, more moves or generations are required to cover the
whole configuration surface evenly, and this results in a
longer Markov chain length (i.e., number of moves) at
each temperature level. As described in the previous
section, the HSS technique (Fig. 1(b)), a quasi-random
number generator, can generate uniform samples over the
k-dimensional hypercube. In this work, we use HSS to
generate the Gy; for SA and derive a new SA algorithm
called Extended Simulated Annealing (ESA). It should be
noted in using the HSS for ESA, one has to keep the &-
dimensional uniformity property of HSS by generating
the k probabilities for G;; from configuration i in a
complete space of a Markov chain length. To illustrate
this, consider the following Stochastic Integer Program-
ming (SIP) problem from Birge and Louveaux (1997):

min =2y} — 3y,

subject to  y + 21 < & —xy,
<

n <& —x,
y = 0, integer, (7)
where &=(2,2)" or &= (4,3)", each with an equd]

probability, and the current iterate pomi isatx = (0,1)T.
The optimal solution is at y = (2, l) The implementa-
tion of SA to this example requires four probabilities: one
for assigning &, two for discrete up and down moves of y,
and one for the Metropolis criterion. In traditional SA
algorithms, these probabilities are established by gener-
ating a pseudo-random number based on MCS at a time.
However, to exploit the k-dimensional uniformity of
HSS, these four probabilities are generated together by
generating all the N (number of moves at each tempera-
ture, i.e., Markov chain length) quasi-random numbers
based on HSS at once, and then using them one at a time.

To compare the performance of ESA with SA, both
MCS and HSS ways are used to generate the four proba-
bilities. The average value of the total moves, which are the
number of moves at each temperature level (i.e., each step)
multiplied by annealing steps, is obtained from 15 different
initial conditions. The total moves for the SIP with the
HSS technique is found to be 530 while the MCS technique
required a total of 1331 moves, a significant saving.

To further demonstrate the efficiency improvement of
the ESA over the SA, the following examples are tested:
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ND

Example I: f(y) = Z_}-’f, (8)
=1

M

F) =3 {01 =3 + 0a0) - 3

i=1

Example II;

(i) — 3)3}, 9)
ig): i\2 M ,
Example I1I:  f(x,y) = (xi = —) g B/
- Np) L
ND
— Hcos(4n},',-). (10)

25
Example IV: f(y) = [0.002 == Z{j +(n — aj)ﬁ
=

=)
+(2— )"} ] (11)
where x denotes a vector of continuous variables and y
denotes a vector of discrete variables. Example I is a
multi-dimensional parabolic function taken from Salazar
and Toral (1997) where ND is the dimension of the
function. This example has one global optimum at zero
for all decision variables. The second example, a pure
combinatorial problem, appears in Painton and Diwekar
(1994) where the objective space is discontinuous with
respect to . This example also has one global optimum
when y, is three and all y5(7), y3(i) are three (i = 1,..., ).
Since the third example involves discrete and continuous
decision variables, this example function is a MINLP
problem. As an alternative to MINLP, a coupling of SA
and NLP, SA-NLP (Narayan ef al., 1996), is used to solve
this problem. This function has one global optimum
(f(x,y) = —1) and many local optima. The last example
is De Jong’s test function (De Jong, 1981), which is
commonly used for benchmarking SA algorithms and
genetic algorithms. The constants, a; and b;, have the
following 25 components:

a; = {~32,-16,0,16,32,-32,-16,0,16,32, ...,
—132,-16,0, 16,32},

b; = {—32,-32,-32,-32, 32, — 16, 16, — 16,
—16,—16,...,32,32,32,32,32}.

This function has 25 local minima and one global mini-
mum (/" = 0.998) if y; and y, are —32.

Figure 2 shows G;; probabilities of HSS and MCS for
Example I with ND = 10. Because there are 10 elements in
y. the ideal probability for selecting any element is 0.1,
and the value of a selected element can be randomly
bumped up or down with a probability of 0.5. Thus the
dotted lines in this figure show ideal two-dimensional Gj;
probabilities, while circle and cross symbols are for the
actual generation probabilities from HSS and MCS, re-
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Fig. 2. Generation probabilities G;; for HSS and MCS, Ex-
ample 1 with ND = 10 (note that several points for HSS over-
lap).

spectively. Since HSS can generate more uniform samples
in the multivariate space, G;; probability, generated using
HSS., is closer to the ideal probabilities than the results
from MCS. In contrast, G;; generated from MCS has a
high deviation from the ideal probabilities, and hence,
MCS requires a large number of moves to approximate
the ideal probabilities.

Figure 3 shows trajectories of the objective value for
Example 1 with different Markov chain lengths. ESA
found the global solution with a Markov chain length of
45 at each temperature while the traditional SA exploited
a Markov chain length of 75 to reach the same solution.
As can be seen, ESA provides a significant reduction in
moves at each temperature. Table 2 presents the efficiency
improvements of the ESA algorithm in terms of the total

4000
—0— SA
—O— ESA
3000 -
e
8 2000 -
o
1000 -
0 4
20 40 60 80 100

Markov chain length

Fig. 3. Cost trajectories of ESA and SA as a function of
Markov chain length (ND = 10).
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Table 2. A comparison of SA and ESA in terms of the total
number of moves

Example ND Total move Total move Percentage
(SA) (ESA) saving (%)
I 10 3109 1536 50.6
50 18 598 12 995 30.1
100 39 790 23 000 42.0
11 1285 592 54.0
111 10 2742 1700 38.0
40 13 238 6985 47.2
v 11 625 8075 30.5

number of configurational moves. The results obtained
here are the average values for 10 different initial condi-
tions used. From this table, it can be said that ESA is
approximately 30-54% more efficient than SA.

3.2. Extended STochastic Annealing (ESTA)

Stochastic annealing, a variant of simulated annealing, is
designed to solve discrete optimization problems under
uncertainty recently proposed by Painton and Diwekar
(1995), and Chaudhuri and Diwekar (1996, 1999). This
algorithm is designed to efficiently optimize a probabi-
listic objective function by balancing the solution accu-
racy and computational efficiency. In the stochastic
annealing algorithm, the optimizer obtains not only the
decision variables, but also the number of samples re-
quired for the stochastic model. Stochastic annealing uses
a substitute objective function, which involves the true
value of the probabilistic objective function augmented
by a penalty term involving an error in sampling related
to the number of samples. Thus the stochastic program-
ming problem (P3) can be modified to a new one ([P4)
that consists of the expected cost function E¢f (x, &) and
the penalty term h(t)e, and is given by:

(P4) minz = Egf(x,E&) + b(1)e,

l Nmmp
= > fx, &)+ b(0)e.

NSﬂlTlp }:]

(12)

The penalty function is composed of the weighting
function b(r) and the error bandwidth (confidence inter-
val) e of the sampling method. The weighting function
b(t), governed by the cooling schedule, can be expressed
in terms of the annealing temperature level (1). At high
temperatures, the sample size (Ngymp) can be small since
the algorithm is exploring the functional topology in the
configuration space. Thus at this stage computational
efficiency is more important than solution accuracy. As
the system gets cooler, the algorithm searches for the
global optimum. Consequently, it is necessary to take
more samples to get more accurate and realistic objec-
tives. Based on these properties, an exponential function
for b(t) can be devised as:
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b,

b(f}_F‘

where b, is a small constant (e.g., 0.001) and k is a con-
stant (e.g., 0.92) which governs the rate of increase. These
two empirical parameters depend on the cooling schedule
and must be predetermined through experimentation
such that the penalty term is less than 5% of the real
objective function.

The error bandwidth of random samples can be esti-
mated from the following equation based on classic sta-
tistical methods. No matter what the distribution of X is,
the central limit theorem allows one to calculate the
probabilistic error bands on the expected value of the
random samples generated by a simple MCS. For a 95%
confidence interval, the standard normal variate is ap-
proximately equal to a value of constant two resulting in
a following equation.

(13)

20

EMCS = — 77—
AV Nsamp

where ¢ is a standard deviation.

In our first approach for the development of stochastic
annealing algorithms, we have used this error bandwidth
in the penalty function, allowing stochastic annealing to
control the number of samples.

Main steps of the STA algorithm are summarized in
Table 3. A new configuration S’ is generated from the
current configuration S based on the given generation
probability G;; (Step 2.1.1. and 2.1.2.). Ngmp in Step 2.2.
can be randomly increased or decreased but eventually is
governed by the weighting function used in the penalty
term. After determining and generating Ny, uncertain
samples, the model runs Ny, times with different un-
certain parameters to find E¢f(x, £). The new stochastic
objective function shown in Step 2.7. is then used to
evaluate the effect of uncertainties on the optimization
problems. The remaining steps are the same as the sim-
ulated annealing algorithm steps.

The idea for reducing Markov chain length by using
HSS, as done in ESA, is exploited here for the new sto-
chastic annealing, algorithm. Additionally, HSS is used in
the inner sampling loop for uncertainty analysis. This is
likely to reduce the number of samples needed to calcu-
late the objective function accurately. We call this
two-level improved stochastic annealing algorithm the
Extended STochastic Annealing (ESTA) algorithm.

Consider the difficult deterministic MINLP problem
given in Equation (10) that incorporates uncertainties (&)
in this problem results in the following objective function,
a stochastic MINLP to be minimized.

(14)

a ND

. ND i 2 ND "
fxy,8=> (c - N—D) +_(€07) = [T cos(anciy).
=1 i=I i=1

=

(15)
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Table 3. Main steps in the stochastic annealing algorithm

Kim and Diwekar

Step 1. Initialize variables: Tiniian Trreeses ®. accept and reject limits, and initial configuration (S)

Step 2. If (T > Theere). then perform the following loop N (number of moves at a given temperature) times.
2.1. Generate a move S’ from the current configuration S as follows:
2.1.1. Select the decision variables for new configuration S’ (zero-one, integer. discrete,

and continuous variables).

2.1.2. Select the parameter level randomly within the neighborhood.
2.2. Select the number of samples Nymp by a random move. If rand(0. 1) < 0.5, then

Nsamp = Nsamp + 5 % rand(0, 1)
else
N‘iilmp S Nsﬂmp —5x rand((). 1)

2.3. Generate N, samples of the uncertain parameters.

2.4. Perform the following loop Ny, times.
2.4.1. Run the model.
2.4.2. Calculate the objective function cost, /(x: &).

2.5. Evaluate the expected value Ef(x, &) and the variance of the cost function.

2.6. Generate the weighting function b(t) = b, /K’
2.7. Calculate the modified objective function:

Nammp )
:(S',] - N-.:mrl Z 'Ii{x‘ 6’) T b(” FF%
i=1 i

2.8. Let AH = z(8") — z(S).

2.9. If AH < 0, then accept the move and set S = S'. Else if (AH > 0), accept with a probability. exp (—-AH/T).

Step 3. Set T'=aT. If (T > Tiyeeze), return to Step 2.
Step 4. Stop.

Since this example problem has a continuous decision
vector (x) and a discrete decision vector (y). a coupling of
STA and NLP (STA-NLP), similar to SA-NLP, is used.

Table 4 shows the total NLP subprogram calls using
the STA and the new ESTA algorithms. Even for the
same Markov chain length (the first two rows), ESTA is
approximately 45% more efficient than the STA ap-
proach. This reduction is mainly attributed to the faster
convergence property of the HSS technique. Further re-
duction can be achieved when a minimum Markov chain
length for each STA is determined (the last row). To find
a minimum Markov chain length, the concept of cost of
epoch proposed by (Skiscim and Golden (1983) is applied
to determine a pseudo-thermal-equilibrium at each tem-
perature level. A current epoch (summation of a certain
consecutive cost values) is compared with the previous
epoch, and if the difference between epoches is within
tolerance, then we assume pseudo-thermal-equilibrium.
The minimum Markov chain lengths at each temperature
level were 60 for STA and 40 for ESTA, and hence the
efficiency improvement reaches up to 65%. This reduc-

Table 4. A comparison of STA and ESTA in terms of the
average number of NLP subprogram calls

ND STA ESTA Percentage  Markov chain
savings (%) length

2 6218 3298 47.1 100

10 5670 3265 42.4 100

10 4015 1439 64.2 Minimum

tion is a combined effect of the uniformity property of the
HSS-based random number generator and the faster
convergence property of HSS.

3.3. Hammersley STochastic Annealing (HSTA)

The error bandwidth used in the STA and ESTA algo-
rithms presented in the previous section are based on
classic statistical methods (Equation (14)). Classical sta-
tistical methods provide good estimates for the bounds
(confidence intervals) of the Monte Carlo sampling but
may not be applicable to other less random, yet uniform,
sampling techniques. It has been shown that classic sta-
tistical methods used to characterize the error bandwidth
for any confidence level of HSS overestimate either the
confidence intervals or bounds (Chaudhuri and Diwekar,
1999; Diwekar, 2000). Hence, the combination of the
HSS technique and the classic error bandwidth (epcs) in
the ESTA algorithm is not the most efficient approach,
and further improvement is made possible by using a
modified error bandwidth that is specific to the HSS
technique.

An approach to quantify the error bandwidth for any
probabilistic function is clearly outlined in Chaudhuri
and Diwekar (1999) and Diwekar (2000) and is based on
concepts from fractal geometry. In this earlier work, it
was established that the relative error bandwidth of the
Monte Carlo and HSS techniques shows a scaling rela-
tionship (Nf_:lmp) with respect to the number of samples.
For the HSS technique, the exponent for the error
bandwidth for the mean is found to be —1.8 from com-
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prehensive simulations, and thus the HSS-specific error
bandwidth is given by:
1
EHSS X —]\“—8 s

samp

(16)

Note that the d of the MCS technique is estimated as
—(.5. That 1s the exactly same value obtained from the
classic statistical methods as shown in Equation (14).
Finally, the stochastic programming problem (PP4) be-
comes:

N.iamp
(P5) min z= - D f(x, @)+ b(t) x w17}
sam j=| samp

A new variant of stochastic annealing, HSTA (Ham-
mersley STochastic Annealing), therefore, incorporates:
(1) HSS for the generation probability G;;; (ii) HSS in the
inner sampling loop for Ny, determination; and (iii) the
HSS-specific error bandwidth in the penalty term to solve
the stochastic programming problem (P5). To evaluate
the efficiency improvement by this new HSTA algorithm,
the same probabilistic objective equation (Equation (15))
is used.

Figure 4(a and b) shows trajectories of Nymp and the
penalty term in a percentage of the objective function for
the ESTA and HSTA algorithms. From this figure we can
see that Ngmp is significantly reduced when stochastic
annealing-based algorithms are used. Further decrease in
Nsamp 1s observed for the HSTA algorithm due to reduced
error bandwidth. Note that there is a large difference in
the penalty percentage values between the ESTA and the
HSTA. Table 5 shows results comparing the hierarchical
improvements from stochastic optimization with fixed
Ngamp to the newest HSTA algorithm. In the table, prob-
lem (IP3) is the stochastic optimization with fixed Ngmp
while the problems (P4)/(P5) are the stochastic optimi-
zation with automatically varying Nyamp. The fixed Ny is
100 in this comparison while the Ny at (P4)/(P5) al-
gorithms spans from 15 to 90. The base case for com-
parison is SA with a fixed Ngmp, in which the objective
function in SA is modified to (P3). The base case requires

—C— Nsamp

- (a) ESTA

Nsamp
Penalty (%)

50
Temperature level
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Table 5. A comparison of the levels of algorithm improvements
(ND = 10)
Algorithm Problem  Total moves — Percentage

savings (% )

SA + fixed Ngmp (P3) 274 200 -
ESA + fixed Nywp  (P3) 170 000 38.0
STA (P4) 5670 979
ESTA (P4) 3265 98.8
HSTA (P5) 1793 99.3

Fixed Nyymp = 100.

274 000 moves to find the optimal solution x*. This sto-
chastic programming can be improved up to four levels:
ESA with fixed Ngmp, STA, ESTA, and HSTA. A large
improvement in computational efficiency can be achieved
if ESA is used instead of SA. We can further see that there
is significant improvement when we change the problem
type from (P3) to (P4)/(P5). The improvement is over
97%, and is mainly attributed to the use of the penalty
term and the properties of the HSS sampling technique.
Among the stochastic annealing algorithms, HSTA is
68% faster than the basic STA algorithm.

The following real world case study illustrates the
usefulness of this approach for large-scale combinatorial
stochastic programming problems.

4. Case study: solvent selection

Solvents are extensively used as process materials (e.g..
extracting agent) or process fluids (e.g.. CFC) in chemical
process industries, pharmaceutical industries, and sol-
vent-based industries (such as coating and painting).
Since waste solvents are a main source of pollution to air,
water, and soil, it is desirable to use reduced amounts of
solvents and/or environmentally friendly solvents without
sacrificing process performance. There are some solvents
that must be eliminated because of environmental and
health effects and regulatory requirements. For example,
the Montreal Protocol bans many chlorinated solvents.

a0 05
—0— Nsamp (b) HSTA
0.4
&
03 &
=
g
02 3
o
0.1
AT
00
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Temperature level

Fig. 4. The trajectories of Nymp and penalty percentage of the: (a) ESTA algorithm; and (b) the HSTA algorithm.
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Solvent selection, an approach used to generate can-
didate solvents with desirable properties, can help to
handle these problems. Several methodologies have been
developed for solvent selection over the years. The first
approach uses traditional laboratory synthesis and test
methodology to find promising solvents. This method can
provide reliable and accurate results, but in many cases is
limited by cost, safety, and time constraints. The second
approach is to screen the property database. Although it
is the most common and simple method, it is limited by
the size and accuracy of the database. However, these two
methods may not provide the best solvent because of the
sheer number of solvent molecules to be tested or sear-
ched. Finally, Computer-Aided Molecular Design
(CAMD) can automatically generate promising solvents
from their fundamental building blocks. CAMD is gen-
erally the reverse use of the group contribution method
that is used to generate molecules having desirable prop-
erties. A basic diagram of CAMD is shown in Fig. 5, in
which there is a set of groups as a starting point. These
groups are uniquely designed to generate all possible
molecules by exploring all possible combinations. The
properties of each group and/or the interaction parame-
ters between groups can be theoretically calculated, ex-
perimentally obtained, or statistically regressed. From
this set of groups, solvent molecules can be generated
by group combinations. For example, ethanol (CHj-
CH,OH) is generated from the CH;, CH, and OH
groups. Constraints from physical and chemical proper-
ties, as well as those from regulatory restrictions, may be
imposed, and hence the number of combinations can be
reduced. Once molecules are generated, the properties of
the molecules are predicted based on the properties of
their groups in order to determine if they satisfy the
specified criteria. This method can generate lists of can-
didate solvents with reasonable accuracy within moderate
time scale. However, CAMD is limited by the availability
and reliability of property estimation methods. All
methodologies for solvent selection are exposed to un-
certainties that arise from experimental errors, imperfect
theories or models and their parameters, or the improper
knowledge or ignorance of systems. Although uncer-
tainties can affect the real implementation of selected
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solvents, few papers in the literature have focused on
uncertainties. In this study the new framework is applied
to generate greener solvents for acetic acid extraction
from water as a case study. The problem is to find the best
solvents for acetic acid extraction from water.

Solvent selection is an automatic generation of solvent
molecules with desired properties. Computer-Aided Mo-
lecular Design (CAMD) constructs candidate solvent
molecules from their building blocks or groups and esti-
mates properties of the generated solvents. Then the
stochastic programming algorithm based on (P5) is used
to select groups to obtain solvent molecules, propagate
Ngmp samples, and optimize the problem to find the best
solvent. Since the properties of the building blocks are
inherently uncertain and there are large number of mo-
lecular combinations of groups, this case study provides a
good test for the newly developed combinatorial sto-
chastic optimization algorithm, the HSTA.

4.1. Solvent selection model

To replace the current solvent or design a new one, there
are several criteria such as distribution coefficient (m),
solvent selectivity (f), solvent loss (Sp). and physical
properties like boiling point, density, viscosity, and so on
that must be satisfied. Of these, the distribution coeffi-
cient (m), a measure of solvent capacity, is the most im-
portant factor and is defined as:

(18)

where the symbols, A, B, and S, represent a nonpolluting
molecule (e.g., water), polluting molecule (e.g., acetic
acid). and solvent molecule (e.g., ethanol), respectively.
In the above equation, the distribution coefficient is a
function of the infinite dilution activity coefficients (),
which shows the non-ideality of the mixtures (A-B, A-S,
and B-S). If the mixture is ideal, > is close to one.
Otherwise. y™ tends to be greater than one or close to
zero. ™ itself is a function of groups, temperature (7).
pressure (p). and concentration (C;). There are several
group contribution methods for the prediction of 3. The
most popular method is the UNIFAC group contribution

groups moiecules properties
CH, GEO all possible reusiisets
? - combinations : c:}';[ f-""-:"
OH CH,=CH such as efficien
T—— Ill:"> - selectivity
coo ‘k CH,CH,0H 0 : - solvent loss
ety | generate ) test - boiling point
COOH etc. CH,COOCH, - elc.

Fig. 5. A basic diagram of CAMD based on group contribution methods.
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method (Hansen et al., 1991). In the UNIFAC method,
the activity coefficient (y,) of a molecule 7 has two parts:
the combinatorial and residual part.

(19)
The combinatorial part reflects the volume and surface
area of each molecule; hence, the volume (g;) and surface
area (ry) parameters of each group k in molecule / are
involved to estimate the combinatorial part. The residual
part represents the interaction energies of the molecules;
hence. the volume parameter and interaction parameters
(@mns @nm) between groups m and n in the mixture are
required to predict 7. Two interaction parameters can be
obtained by the regression of experimental data of the
mixture. The infinite dilution activity coefficient of mol-
ecule 7 in a mixture is a limiting activity coefficient when
the concentration (C;) of molecule 7 in a mixture tends to
zero, as shown in Equation (20) below. In short, 7 is a
function of volume and surface area parameters, inter-
action parameters, temperature, pressure, and concen-
tration. A detailed UNIFAC model equation is given in
Appendix A.

Inyi = Iny’ + InyR.

3 = lim 7.(q,,a,T,p, ). (20)
Even though the UNIFAC group contribution method
has several limitations, it provides a useful model for
screening and guiding solvent molecules.

The deterministic solvent selection problem is given
below:

o ()
ea (N1, Ny )

min oo
7’;5(N|3 2 )

(21)

subject to
o TRs(N N
p(solvent selectivity) = L‘E”—) =1
?;S(N[ b} N2 )
Si.(solvent loss) = < 0.058,

AN NY)

N .
47°C < Typ(boiling point) = > ", x Ny + 4, < 108°C,

i=1

Table 6. A set of discrete decision variables
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2 <N £ 10,

1<N? <24, VieN.

In this problem, the discrete decision variables are the
number of groups (N;) in a solvent molecule and the
group index (Nzt').i == 1ty Ni) of that molecule. These
groups can then build a unique solvent molecule that
represents a configuration in the SA-based algorithms.
The UNIFAC model is used to predict the objective
function, and other solvent selection criteria such as sol-
vent selectivity (ff) and solvent loss (Sp). Solvent selec-
tivity, the ability of the solvent to selectively dissolve a
polluting molecule, and solvent loss, the measure of the
solvent loss tendency, are also functions of ™. To esti-
mate boiling points (7gp) as a constraint, the boiling
point prediction group contribution equation has ¢, and
t, as parameters. The bounds on the constraints are taken
from the properties of the current solvent for acetic acid
extraction.

The group index used in this case study is summarized
in Table 6. Since the total number of groups is 24 and a
maximum of 10 groups per molecule is allowed, the total
combinatorial space is composed of 241° (6.34 x 10")
combinations. The three UNIFAC parameters, surface
area, volume, and interaction parameters, as well as
boiling point parameters are tabulated in Appendix B.
This represents the deterministic IP problem which be-
comes a difficult stochastic programming problem when
uncertainties are included in the formulation.

4.2. Uncertainty quantification

Uncertainties are ubiquitous and inevitable in any pro-
cesses or systems. They arise from imperfect theories or
models and their parameters, and improper knowledge or
ignorance of processes. Because these uncertainties are
directly linked to economic loss, we want to understand
uncertainties, figure out key decision parameters, and try
to minimize the effects of these uncertainties.

The group parameters in Equation (18) that will be
used in the UNIFAC equation, have three terms:; the
surface area (R;) and volume (Qy) of each group, and the
interaction parameters between groups (a,,,). The surface

i 4 i (o i N i N5/

1 CH;— 2 —CH— 3 —CH< 4 >C<

5 CH,=CH— 6 —CH=CH— 7 CH->=C< 8 —(CH=C<
9 >C=C« 10 —OH il CH;0H 12 H-O

13 CH;CO— 14 —CHC0~ 15 —CHO 16 CH.COO—
17 —CH-CO0— 18 HCOO— 19 CH,0— 20 —CH,0—
21 >CH—0O— 22 —COOH 23 HCOOH 24 —CO00—

—, >, and < represent the number of connecting nodes for molecular combinations,
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area and volume of each group are constants because
they are calculated from atomic and molecular structure
data. However, the interaction parameters are obtained
from the regression of huge experimental data and thus
are subject to uncertainties due to experimental and re-
gression errors. Further, activity coefficients (y,) at a finite
condition (i.e.. C; =0.00001) are, by definition, extrap-
olated to infinite dilution activity coefficients (y;* =
lime g 7,) in which large discrepancies between experi-
mental and calculated values can be observed.

Uncertainty quantification involves finding the type of
probability distribution, and quantifying the first and
second moments (i.e., mean and variance) and higher
moments of the distribution. The group contribution
UNIFAC equation (Equations (Al)-(A4) in Appendix
A) for y™ estimation is a complicated nonlinear loga-
rithmic function. The interaction parameters, which are
the main source of uncertainty, are in the deepest part of
the UNIFAC equation, and the total number of inter-
action parameters are close to 2000.

Aside from the mentioned difficulties for uncertainty
analysis, the numerical values of the interaction param-
eters are scattered, and for each binary pair of groups the
interaction parameters are highly correlated (Xin and
Whiting, 2000). Therefore, one cannot elicit all uncer-
tainty information of the interaction parameters nor ap-
ply uncertainties on the all interaction parameters due to
mathematical and computational complexity.

In this paper, we have used a unique and useful way of
representing these complicated uncertainties. Information
regarding to the thermodynamic properties is utilized to
lump the highly correlated interaction parameters into
one parameter (more precisely, one parameter with three
categories). We introduce a new uncertainty quantifica-
tion term called the Uncertainty Factor (UF), which is a
ratio of the experimental ™ to the calculated y*°. UF is
defined in Equation (22) and shows how much the cal-
culated y™ is deviated from the true .

Yexp

UF =—. 22
?;;Jic ( )
Note that a UF of unity means the calculated value is
exactly equal to the experimental value.

Further, since the properties of water are quite different
from those of organic chemicals, y™ and thus the UF can
be divided into three categories based on the mixture
systems: ™ in the organic-water, water-organic, and or-
ganic-organic systems.

The UFs, the estimated y™s of 227 binary chemical
systems are compared with the experimental values ob-
tained from Barton (1983). Figure 6 shows a probability
density function (pdf) of the UF of 73, yic water- It can be
seen from this figure that the type of distribution on this
7™ is a lognormal distribution with the arithmetic mean

of 2.92 and the standard deviation of 5.94. From this pdf
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Fig. 6. The probability density function of UF of y

fnrbdnlu witer
(a total of 227 experimental data are compared).

one can expect that uncertainties exert great impact on
the ™ due to the large mean and wide standard devia-
tion. It is also found that the probability distribution
functions of UF of the other two infinite activity dilution
coefficients (7% ier organic 304 Vorganic,organic) @r¢ normally
distributed (N(1.08, 0.37)) and lognormally distributed
(log N(1.42, 1.14)), respectively. The values of 73 ;o reanic
tend to be less affected by uncertainties because non-
ideality caused by water is small in these mixtures. It is
interesting to see that all the distributions are shifted to
the right or are positively skewed. Therefore, uncertain-
ties not only perturb ™ but also increase the output
values of y™.

4.3. The stochastic programming problem and results

The discrete stochastic programming problem for finding
the best candidate solvents for acetic acid extraction from
water is then formulated as follows:

Nsamp [+ N N‘SU w £
min A, E,.)) <18 (23)
Nsamp ' | 7855(N1, N;") x &
subject to
¢ ~ logN(2.92,5.94),
& ~ N(1.08,0.37),
&y ~ logN(1.42,1.14),
N [yes (NN, ) x &
f(solvent selectivity) = e ?n) = =2T;
Neamp 57 | vs (N1, N, ) % &
S1 (solvent loss) = . | < 0.038,
Nsarmp Z:: 75 NI»NQH)X‘?‘
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Ny :
47°C < Typ(boiling point) = Y "1, x Ny’ + 1, < 108°C,
i=1

2< N <10,

1SN, <24, YieM,

where &, are uncertain parameters of UF; and imposed on
the output 3. Discrete decision variables are the number

of groups (N)) in a solvent molecule and the group index

(M. i=1,....N;) of that molecule that can build a
unique solvent molecule that is a configuration in the SA-
based algorithms.

To move to a new configuration (i.e., group combina-
tion) from the current configuration in the HSTA algo-
rithm (see Step 2.1. in Table 3), there are three processes
used: addition, contraction, and random bump. In addi-
tion process (NV; = N + 1) the number of groups (N, ) in a
solvent molecule is increased, and a random group index
is assigned to that increased group. In contraction process
(N} = N, — 1), one group is randomly deleted. In random
bump (N; = Nj), the number of groups in a molecule is
unchanged. Instead, an arbitrarily selected group index
( 2[')) is randomly bumped up or down. The magnitude of
these bumps are also random. The probabilities for these
three processes are specified at 30, 30, and 40%, respec-
tively. A large random bump probability is guaranteed to
span all the group indexes. Besides these basic probabil-
ities, there are also several probabilities for configura-
tional moves.

Figure 7(a) shows the progress of the HSTA (Ham-
mersley STochastic Annealing). Two objective values are
plotted with respect to the annealing temperature level:
the true (expected) objective and the objective with pen-
alty term. At the beginning of annealing, exploring the
configuration surface to locate local optima is more im-
portant than the solution accuracy of these local optima.
Therefore, the two objectives are very close because of a

-0.6
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Table 7. Top 15 candidate solvents for both cases

Rank Solvents m (distribution coeffcient)

Stochastic Deterministic

1 2CH,, CH,, CH, HCOO 2.95 0.87
2 CH,, CH,, CH=CH, 2.60 0.75
HCOO
3 CH;, CH,, CH>=C, HCOO  2.55 0.75
4 CH;, CH,=CH, 2CH,0 227
5 CH,, CH;=CH, CH;0 2.27
CH—O
6 CH;, CH, CH>=CH, 2.15 0.63
CH;0. CH,0
7 CHs, CH>=C, CH;CO 2.09 0.61
8 CH,, CH=CH, CH,CO 2.08 0.61
9 CH,, CH,, CHs=C, 2.04
CH;0, CH,0
10 CHs, 2CH,, CH5CO 1.96 0.60
Il CHs CHs, CH,=C,CH;O0 1384
12 2CH,, CH,=CH, CH,0, 1.55
CH,0
13 CHs, CH=CH, CHO 1.51
14  CHs CHa, CH. 1.49
CH,=CH, CH;0
15  2CH;, CH, CH=C, CH:0 14l

small weighing function b(z) that results in a small pen-
alty term. As annealing proceeds, solution accuracy be-
comes more important than solution efficiency, and b(t)
increases very rapidly for not being precise. To maintain
or enhance the solution accuracy by reducing the penalty,
the trend is to increase number of samples Nymp, as
shown in Fig. 7(b).

Table 7 shows the optimal solvent candidates for the
stochastic (HSTA) and deterministic (STA) cases. Both
cases generated 40 candidate solvents, and only the top 15
are ranked with respect to the order in the stochastic case,
and thus only seven solvents from the deterministic case

400

(b)

100

0 : - : T : -
0 10 20 30 40 50 60
Temperature level

Fig. 7. (a) Changes of the objective values; and (b) changes in the number of samples.
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are listed in this table (see the blanks at the deterministic
case). This implies that the deterministic case does not
generate several or many promising solvents, which ap-
peared in the stochastic case. As expected, distribution
coefficients for the stochastic case are greater than those of
the deterministic case due to the positively skewed un-
certainty factor, mainly y7 .. i waier» and because increased
m values become closer to the experimental values.

Table 7 presents these candidate solvents for further
screening in terms of design, safety, health, and envi-
ronmental constraints. Solvent availability, toxicity eval-
uation, and safety consideration are some valuable
criteria that may be used. Finally, experimental verifica-
tions should be followed. After screening, if the first top
three solvents in Table 7 were not found to be practically
useful', then different candidate solvents between the
stochastic and deterministic cases could lead to big dif-
ferences in the whole solvent selection process. Thus it is
clear from this result that real implementation of CAMD
without considering uncertainties may fail to find the best
solution.

The Value of Stochastic Solurion (VSS) (Birge and
Louveaux, 1997) can be used to quantify the effects of
uncertainty. The difference between taking the average
value of the uncertain variable as the solution as com-
pared to using the stochastic analysis is defined as VSS.
Thus VSS represents the loss by not considering the un-
certainties. Because the uncertainty factors represented as
& over ™ are implemented in the objective function, we
can assume that the expected value of the stochastic
problem with the average & be 2.06 (=2.92/1.42) times
the deterministic m shown in Table 7. For the first set of
solvent molecules in this table, the VSS of this case study
is estimated as 1.16(=2.95 — 2.06 x 0.87), and the sto-
chastic optimization, therefore, increases the performance
(distribution coeflicient in this study) by 65%. Other sets
of solvent molecules have a similar VSS.

Further, we can also observe differences in the proba-
bility density function of the solvents. Figure 8 shows the
probability density functions (pdf) of distribution coeffi-
cients of the top 40 solvents for each case. The pdf of the
deterministic case looks like a narrow lognormal distri-
bution with a small standard deviation and has a strong
peak at the distribution coefficient of 0.53. On the con-
trary. the pdf of the stochastic case is a wide normal dis-
tribution with a mean of 1.34 due to positive skewness of
the uncertainty factors. The narrow deterministic log-
normal pdf is changed to a wide normal pdf and shifted
positively under the stochastic case, and the stochastic
case can thus cover wider range of the configuration space.
In addition, the types of proposed solvents are different

' The generated solvents are chemically possible, but they may
be economically infeasible. We cannot estimate the cost of
generated solvents using any group contribution methods.
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Fig. 8. Probability density functions of distributed coefficients
for the deterministic and stochastic cases.

from each other. Although most of the solvents are in one
of the following types — formates, alcohols, esters, or
ethers — the stochastic case can provide additional types of
solvents that are alkanes and alkenes. From this case
study we can see the importance of uncertainties and the
usefulness of the HSTA algorithm for large-scale combi-
natorial stochastic programming problems.

5. Conclusion

This paper presented hierarchical improvements in the
SA-based algorithm for solving large-scale discrete opti-
mization problem under uncertainty. At first, the deter-
ministic SA was modified to ESA, which exploited the
uniformity property of the HSS technique, and which
resulted in a shorter Markov chain length at each tem-
perature level. The same concept was then applied to the
stochastic annealing algorithm, resulting in the new
ESTA algorithm that provided the trade-ofl between
computational efficiency and solution accuracy by auto-
matically determining Ngmp. In addition, the faster con-
vergence property of HSS is also incorporated in this
algorithm. The efficiency is improved further in the
HSTA algorithm by using the HSS-specific error band-
width in the penalty term of the probabilistic objective
functional. For stochastic MINLP problems. HSTA was
coupled with the NLP algorithm. For the test problems
considered in this study, the combined improvement of all
the steps in the hierarchy was shown to result in 99.3%
savings in computational time. A real-world look at sol-
vent selection under uncertainty for acetic acid extraction
was presented as a case study. It is concluded that the
stochastic programming solution provides different sets
of candidate solvents with more promising properties as
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compared to the deterministic solution. Further, the
stochastic solution covered a wider range of the config-
urational surface. Therefore, the HSTA algorithm can be
a useful tool for large-scale combinatorial stochastic
programming problems.
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Appendices
Appendix A: The UNIFAC model and example

Activity coefficient (y,) of a molecule i has two parts: the
combinatorial and residual part (Hansen ef al., 1991).

(AL)

The combinatorial part reflects the volume and surface
area of each molecule; hence, the volume (Q;) and surface
area (R;) parameters of each group k in the mixture are
used to estimate the combinatorial part as given by:

Iny;, =1In }'f +In “,ﬂjR.

) 0; ¢
InyC = z+ 5q; ln¢ 1y _x_:z}:% (A2)
where
I = 3(r q,) (re=1);
- giXi . Xy

b= S 4T
qi — Zx v ”Qk ~ Yok U[—'I)Rk?
Xi mole fraction of molecule ¢

(for pure component,x; = 1);
v = number of repetitions of molecule £;
i = molecule i
j = number of molecules in a mixture;
k = number of groups in molecule i.

Ry and Qg, which are tabulated, are the group size and
surface volume parameters that can be obtained from
atomic and molecular structure data, the Van der Waals
group volumes and surfaces. #; and ¢, are the surface
volume fraction and surface area fraction, respectively of
molecule i in the mixture.
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The residual part is induced by the difference of the
residual activity coeflicient (I') of group & in a mixture
and the residual activity coefficient of group & in molecule
i, and is defined as:

In «’vf{ = Z UF) [ln I’k —1In l"i')] (A3)
k

The residual activity coeflicient is defined as follows:

) :
In l"k = Qk‘ |:l —In (Z Bmfmk) — Zz(m%“ o (A4)

where
By =i
o0 OnXs
Ko = Y
Zj P8 ”'%] )x.f
T, = OXY {— a;","] (T = temperature in K),

k,m,n = all groups in a mixture.

f),, is the group surface area fraction and X, is the group
fraction.

As an example, activity coefficients of A (H,0) and B
(CH3COOH: acetic acid) are estimated at x5 = 0.5 and
25°C. The Ry and Q; are shown in the Table Al.

The interaction energy terms are obtained as:

Kim and Diwekar

0 1318 663.5
ay, = | 300 0 —14.09 (AS)
3153 —66.17 0

By using these data into Equations (Al)~(A4), we can
find the activity coeflicients listed in Table A2.

Table Al. The R, and Q; values

k Ry O

H-,O 0.9200 1.4000
CH; 0.9011 0.8480
COOH 1.3013 1.2240

Table A2. The activity coefficients

i In y¢ In ¥R ¥
H,O 0.2305 0.0405 1.3112
CH4COOH 0.1290 —0.0210 1.1141

Table A3. The surface area R, and volume @ values for the UNIFAC equation and boiling point parameters 7,

Main group No. Sub-group Sub-group No. (k) Ry Oy t,
1 CH;— 1 0.9011 0.8480 23.58
—CH,— 2 0.6744 0.5400 22.88
—CHi< 3 0.4469 0.2280 21.74
>C< 4 0.2195 0.0000 18.25
2 CH,=CH— 5 1.3454 1.1760 43.14
—CH=CH— 6 1.1167 0.8670 49.92
CH;=C< 7 1.1173 0.9830 42.32
—CH=C< 8 0.8886 0.6760 49.10
>(C=C< 9 0.6605 0.4850 48.28
3 —OH 10 1.0000 1.2000 92.88
4 CH;0OH 11 1.4311 1.4320 116.46
5 H>O 12 0.9200 1.4000 175.03
6 CH;CO— 13 1.6724 1.4880 100.33
—CH-CO— 14 1.4457 1.1800 99.63
7 —CHO 15 0.9980 0.9480 74.74
8 CH;CO0O— 16 1.9031 1.7280 104.68
—CH,CO0— 17 1.6764 1.4200 103.98
9 HCOO— 18 1.2420 1.1880 84.88
10 CH,0— 19 1.1450 1.0880 46.00
—CH,0— 20 0.9183 0.7800 45.30
>CH—0— 21 0.6908 0.4680 44.16
11 —COOH 22 1.3013 1.2240 160.8
HCOOH 23 1.5280 1.5320 175.53
12 —CO0— 24 1.3800 1.2000 81.10
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Table Ad. Interaction parameters (a,,,) between main groups /m and n

mn 1 2 1 4 5 (5} 7 8 9 10 11 12
1 0.00 86.02  986.50 697.20 1318.00 47640 677.00 232,10 S507.00 251.50 663.50  387.10
2 -35.36 0.00 524.10 787.60  270.60  182.60  448.80 37.85 333.50 214.50 31890 48.33
3 156.40 457.00 0.00 -137.10  353.50 84.00 -203.60 101.10  267.80 28.06 199.00  190.30
4 16.51 —12.52  249.10 0.00 —181.00 23.39 30640 -10.72  179.70 -128.60 =-202.00 165.70
5 300.00  496.10 -229.10  289.60 0.00 -19540 -116.00 72.87 0.00 540.50 -14.09 -197.50
6 26.76 4292 16450 108.70  472.50 0.00 -37.36 -213.70 -190.40 -103.60 669.40 —18.80
7 505.70 56.30  529.00 -340.20  480.80  128.00 0.00 =110.30 766.00 304.10 497.50 0.00
8 114.80 132.10 24540  249.60  200.80 37220  185.10 0.00 —-241.80 -23570 660.20  560.20
9 329.30 110.40 13940 227.80 0.00 38540 -236.50 1167.00 0.00 -234.00 -268.10 -122.30
10 83.36 26,51  237.70 23840 -314.70 191.10 -7.84 46130 457.30 0.00 664.60 417.00
11 31530 1264.00 -=151.00 339.80 —66.17 -297.80 —165.50 -256.30  193.90 -338.50 0.00 -337.00
12 529.00  1397.00 88.63 171.00 284.40 12340 577.50 -23490 14540 -247.80 1179.00 0.00

Appendix B: Group parameters for the UNIFAC
equation

Table A3 shows the data of surface area (R;) and volume
(Qr) of each group k in the UNIFAC equation. The
values are updated by Hansen (1991), and the group in-
dexes are changed for the case study in this paper. The
total number of sub-groups (N;) is 24 while the number
of main groups are 12. Each main group consists of
similar sub-groups. For example, linear alkyl sub-groups
(CH;, CH», CH, and C) are grouped together as “Main
group 17,

Table A3 also shows data for boiling point estimation.
The boiling point can be estimated by the following
equation (Joback. 1984):

M .
Tpp(boiling point, °C) = Z;ﬂ (Nz(zl) 1

i=1

198.12

(A6)

where #, =

Interaction parameters (a,,) between main groups m
and » are summarized in Table A4, where the unitis 1 /K.
These parameters are subject to uncertainties caused by
measurement and regression errors and imperfect models.
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