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1 Introduction

A survey conducted by the World Health Organization (WHO) in 2010 using data

from 190 countries over a period of 20 years found that around 2%women suffer from

primary infertility and 10% women suffer from secondary infertility. Primary infer-

tility is the inability to conceive a first live birth and secondary infertility is the inabil-

ity to conceive after a prior live birth. Certain regions of Eastern Europe, North Africa,

Middle East, Oceania, and Sub Saharan Africa showed greater prevalence of infertility

(Mascarenhas et al., 2012). In the United States itself, data collected by the Center for

Disease Control (CDC) over a 4-year span showed 6.7% of married women to be suf-

fering from infertility (FastStats, 2018).

In vitro fertilization (IVF) process is one of the most commonly recommended

treatments in Assisted Reproductive Technologies (ART). 1.7% of infants were born

through ART in the United States in 2015 (Sunderam et al., 2018). IVF is a process by

which oocytes or egg cells are fertilized by a sperm outside the body in a laboratory

simulating similar conditions in the body, and then the fertilized eggs or embryos are

implanted back in the uterus for a full-term pregnancy. It has four basic stages (Fritz

and Speroff, 2010): superovulation, egg retrieval, insemination/fertilization, and

embryo transfer as shown in Fig. 1.

IVF is an expensive treatment, and the out-of-pocket costs per cycle tend to be

around $10,000–$15,000. This cost varies and increases with multiple factors such

as unsuccessful IVF cycles, multiple births, low-birthweight infants, and preterm

births occurring from IVF cycles (Sunderam et al., 2018). The cost of IVF depends

upon the cost of superovulation. Currently, this step is executed using almost daily

monitoring of the follicular development using ultrasound and blood test. The daily

dosage of hormones is customized for each patient based on these tests. Convention-

ally, doses are prescribed based on empirical data instead of randomized control trials
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and start at 150 or 225 IU. Devroey and team employed initial low-dose FSH (follicle-

stimulating hormone) (100 IU) on a relatively young age group and recorded a high

number of retrieved oocytes (Devroey et al., 1998). Prescribed minimum dosages start

from 150 to 300 IU for younger patients and reach the absolute maximum at 450 IU for

poor responders ( Jungheim et al., 2015; Rombauts, 2007; Dorn, 2005). Certain fac-

tors, which come into play when choosing an FSH dose for a patient, are usually

female age, anamnesis, clinical criteria, and ovarian markers such as AFC (antral fol-

licle count) and AMH (anti-Mullerian hormone) (La Marca and Sunkara, 2014). FSH

starting dose based on AFC was found to be less than 225 IU for most patients under

the age of 35 years (La Marca et al., 2013). Although there are general guidelines for

the dosage limits, the dose is not optimized for each patient. IVF procedure can have

side effects such as the ovarian hyper stimulation syndrome (OHSS) (Alper et al.,

2009), and the remedial actions are still unidentified. Around 1%–2% of women

undergoing IVF suffer from a serious case of OHSS (Klemetti et al., 2005). Patients

suffering from polycystic ovarian syndrome (PCOS) are found to be the ones most

susceptible to OHSS. However, many patients who do not suffer from PCOS may also

develop OHSS after stimulation. Protocols based on factors like age, AMH, AFC,

FSH, BMI (body mass index) levels and smoking history predict optimal protocols

with highest follicle yield and reduced occurrence of OHSS (Yovich et al., 2016).

However, all the existing protocols are based on patient history, testing and monitor-

ing, and professional judgment of the physician. The complications such as

overstimulation or unsuccessful superovulation do occur. The cost associated with
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Fig. 1 Schematic diagram of the in vitro fertilization procedure (Gordon, 2012).
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patient monitoring and testing as well as the hormonal drugs make the superovulation

stage very expensive. The evidence is building in support of personalized IVF treat-

ment (Nyboe Andersen et al., 2017, Sighinolfi et al., 2017; Simopoulou et al., 2018)

and tools that can suggest optimal patient-specific drug-dosage profiles to reduce

hyperstimulation, cost of treatment, improve the oocyte quality, and quantity to

increase the overall success rate of IVF, resulting in successful pregnancies and live

birth. Trials have shown that mild stimulation individualized protocol for poor

response patients with low antral follicular count (AFC< 11) yield similar pregnancy

rates with largely reduced dosages per woman (van Tilborg et al., 2017; Youssef et al.,

2016). A report evaluating merits of mild stimulation protocol for poor responders

suggests that dosage of �150 IU/day yields high-quality oocytes and similar preg-

nancy rates compared to conventional protocols (Practice Committee of the

American Society for Reproductive Medicine, 2018). A nomogram prediction model

based on age, day 3 FSH and AMH to select appropriate starting FSH dose proposed

by La Marca and team was validated through a randomized trial and showed an

increased number of patients exhibiting optimal oocyte retrieval response (Allegra

et al., 2017; La Marca et al., 2013). Moon and team also employed nomogram to pre-

dict the number of oocytes retrieved from IVF cycles from different univariate and

multivariate models based on age, serum FSH, AFC, AMH levels (Moon et al.,

2016). While both AFC and AMH are good predictors of ovarian reserve and oocyte

yield, AFC poses advantages such noninvasive measurement, ease of testing, and

smaller testing time over AMH (Fleming et al., 2015; Kotanidis et al., 2016).

Recently, a modeling approach and a computerized algorithm to generate customized

hormonal dosing policies for enhanced superovulation results, and reduced cost

and decreased testing were presented by our group (Yenkie et al., 2013; Yenkie

and Diwekar, 2014; Nisal et al., 2019). There are four commonly used protocols

for IVF.

The four protocols (Scoccia, 2017), which are generally used: (1) Long Lupron

agonist protocol, (2) microflare agonist protocol, (3) three-stop Lupron agonist pro-

tocol, and (4) Flexible GnRH antagonist (Ganerelix or Cetrorelix) protocol with

NEA. This approach is presented for the first of the four protocols in this chapter.

The validation of the procedure is carried out using clinical data from patients who

have previously undergone IVF cycles. Initial two-day data for each patient are used

to obtain parameters of the model for that patient. The model is used then to predict

FSD for the remaining days of the cycle. This procedure was conducted for 49 patients.

The results of the customized models are found to be closely matching with the

observed FSD on the successive days of the IVF superovulation cycle. This custom-

ized model is then used to optimize the dosage for this patient. The FSD at the end of

the cycle was determined using the model and the optimized dosages. A small clinical

trial was also conducted in India. This was a double-blinded trial. The results show

that the dosage predicted by using the model is 40% less than that suggested by

the IVF doctors. It also shows that the number of mature follicles obtained at the

end of the cycle using the dosage predicted by the model is significantly higher than

that of physician suggested dosage. These results were consistent with all patients in

this clinical trial. The testing requirements for these patients with optimized drug dos-

age are also reduced by 72%.
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The rest of the chapter is arranged as follows. Section 2 describes the customized

modeling approach for each patient, followed by Section 3 on the optimal control for

the determination of hormonal dosage profiles for each patient. These two sections

provide results for clinical data from 49 patient cycles obtained from Jijamata Hos-

pital, Nanded, India. The overall approach is summarized in Section 4. This section

also presents results from the small clinical trial conducted at the Jijamata hospital in

India. Section 5 summarizes the overall approach and provides insights into our ongo-

ing work and future directions.

2 Modeling of in vitro fertilization

In the superovulation stage of IVF, multiple follicles enter into the growth phase and

increase in size due to externally injected hormones (Baird, 1987). There are signif-

icant similarities between the superovulation stage of IVF and the particulate process

of batch crystallization (Hill, 2005; Yenkie and Diwekar, 2012), which has been well

studied in the chemical engineering discipline. We used these similarities to develop a

model for the daily follicle size distribution in IVF (Table 1).

The properties of a particulate system can be represented by moments of its particle

size distribution (Randolph, 1988). The moment model for follicle number and size

was adapted from the concept of batch crystallization (Hill, 2005) based on the anal-

ogy between batch crystallization and superovulation presented in Table 1. The super-

ovulation follicle growth model, in general, resembles greatly to the growth of seeded

batch crystals (Hu et al., 2005). The aim of seeded batch crystallization is to allow the

seeds added to the solution to grow to desired shape and size and truncate the process

of nucleation bymaintaining certain process conditions. The numbers of seed added to

the solution are constant and hence the zeroth moment of seeded batch crystals, which

corresponds to its number, is constant. Similarly, when we look at superovulation, the

Table 1 Analogy between batch crystallization and IVF superovulation stage

Batch crystallization Superovulation (IVF stage I)

l Production of multiple crystals l Production of multiple oocytes or eggs

l Crystal quality is determined in terms of

size distribution and purity

l Oocyte quality is determined in terms of

no abnormalities, similar size

l The rate of crystallization or crystal

growth varies with time and process

conditions

l The rate of ovulation or oocyte growth

varies with time and drug interactions

l The process is affected by external

variables like agitation, and process

operating variables like temperature,

pressure, etc.

l The process is affected by externally

administered drugs and body conditions

of the patient undergoing the process
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number of follicles activated during an IVF cycle is constant. Thus, the moment model

for both the processes can be similar; the growth term, which is a function of process

variables like temperature and supersaturation in seeded batch crystallization,

becomes a function of hormonal dosage in case of superovulation process.

2.1 Data organization and moment calculation

Due to ovarian stimulation using externally injected hormones, the number of follicles

entering the ovulation stage is more in number as compared to a single follicle in a

normal menstrual cycle. The superovulation cycle data obtained from Jijamata Hos-

pital, India, had measurements of follicle size and number along with the amounts of

hormone administration. The data for example for patient 1 are reorganized as shown

in Table 2 in terms of bin sizes of various diameters of follicles.

The data represented in Table 2 can be converted to moments using the general

expression shown in Eq. (1).

μi ¼
X

nj r, tð ÞrijΔrj (1)

Here, μi is the ith moment, nj(r, t) is the number of follicles in bin “j” of mean radius “r”
at time “t,” rj is the mean radius of jth bin, and Δr is the range of radii variation in each
bin. Here, the follicle sizes are divided into 6 bins; thus for efficient process modeling, it

is essential to consider at least first 6 orders of moments along with the zeroth moment

(Flood, 2002). Table 3 shows the moment values evaluated using Eq. (1).

2.2 Model equations

The moment-based model for predicting follicle size and number will involve the fol-

licle growth rate andmoment equations. It is assumed that the follicle growth is depen-

dent on the amount of FSH administered since it the most influential hormone in

Table 2 Variation of follicle size (diameter) with time and FSH dose in patient

# Size bins (mm) Number of follicles

Time ! Day 1 Day 5 Day 7 Day 9

0–4 4 0 0 0

4–8 12 0 0 0

8–12 8 17 1 0

12–16 2 6 15 3

16–20 0 3 10 15

20–24 0 0 0 8

FSH dose (IU/ml) 150 75 75 75

IU—International units used for hormonal dosage measurement.
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Table 3 Moments evaluated for patient 1

Sr. No Time (day) μ0 μ1 μ2 μ3 μ4 μ5 μ6 FSH (IU/mL)

1. 1 52 188 820 4028 21556 123,068 738,100 150

2. 5 52 308 1924 12740 89428 662,228 5,131,684 75

3. 7 52 400 3140 25120 204500 1,691,440 14,189,540 75

4. 9 52 488 4660 45224 445492 4,449,128 44,994,100 75
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follicular dynamics. Thus, the growth term is written as a function of FSH dose; as

shown in Eq. (2). Here, G is the follicle growth term, k is the rate constant, ΔCfsh

is the amount of FSH injected, and α is the rate exponent.

G tð Þ¼ kΔCfsh tð Þα (2)

The number of follicles activated for growth is assumed to be a constant due to the

literature suggested by Baird (1987) and clinical data from the Jijamata hospital;

hence, zeroth moment is constant. The 1st to 6th order moments are used for effi-

cient recovery of the size distributions. The moment equations for the follicle

dynamics are Eqs. (3)–(9). Here, G(t) is the follicle growth term and μi is the ith
moment. It can be clearly seen that the (n + 1)th moment is dependent upon the

nth moment.

μ0 ¼ constant (3)

dμ1
dt

¼G tð Þμ0 tð Þ (4)

dμ2
dt

¼ 2G tð Þμ1 tð Þ (5)

dμ3
dt

¼ 3G tð Þμ2 tð Þ (6)

dμ4
dt

¼ 4G tð Þμ3 tð Þ (7)

dμ5
dt

¼ 5G tð Þμ4 tð Þ (8)

dμ6
dt

¼ 6G tð Þμ5 tð Þ (9)

Patient parameters μ0, k, and α for the models are determined from fitting the

results of Eqs. (1)–(9) to the moment data at different times as shown in

Table 2. In this protocol, in the clinical (experimental) settings, the attending phy-

sician determines the initial dosage for the patient based on various patient factors.

The first-day ultrasound and blood test provides the baseline total number of fol-

licles. The same dose is continued for the first four days and then testing with ultra-

sound and blood test starts. Depending on the tests, each day dose is determined

based on the follicular distribution seen in ultrasound and the blood test results.

Since there are three parameters involved, we need a minimum of two days of data

for the model. The validity of the model can be evaluated by comparing the FSD

predicted by the model from 5th day onwards with that of observed or experimental

values.
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2.3 FSD evaluation

Eqs. (2)–(9) predict the moment values. However, the desired output is required in the

form of FSD; thus, the approach to obtain FSD frommoment values is illustrated later.

The distribution is approximated using the inversion matrix (A) shown in Table 4

along with a nonlinear constrained optimization technique (Flood, 2002; Yenkie

et al., 2013). The method suggested is represented in Eq. (10), which can be rewritten

to keep the unknown variable (n) on the L.H.S. as Eq. (12).

μ¼A n (10)

n¼A�1μ (11)

Here, n is the vector of a number of follicles in all the size bins at the ith day in the

cycle, μ is the moment vector for the ith day, and A is the inversion matrix. For the

current bin size of 2 mm (radii) and the number of bins as 6, the inversion matrix A is

shown in Table 4.

2.4 Follicle number prediction algorithm

To predict the number of follicles in a particular size bin on a particular day in the FSH

dosage regime, a constrained optimization algorithm is applied. The optimization var-

iables in the suggested algorithm are the number of follicles (n) per day in the super-

ovulation cycle. Using this follicle number prediction algorithm, the moment model

for follicle growth can be validated for a given patient.

Step #1: Assign some initial values for n (number of follicles/day) within the different size

bins used in the model.

Step #2: Obtain the moment values by multiplying the matrix A with the initially assumed n
values.

Step #3: Introduce the constraint for the total number of follicles. It is assumed that a con-

stant number of follicles (μ0/2) enter the growth stage in the IVF cycle for a particular

patient. Hence, for each day, the number of follicles must sum up to the assumed

constant value.

Step #4: Restrict the values of n to be either positive or zero since the number of follicles can

never be negative.

Table 4 The inversion matrix A (6 � 6) to recover size distribution from moments

2 6 10 14 18 22

2 18 50 98 162 242

A ¼ 2 54 250 686 1458 2662

2 162 1250 4802 13,122 29,282

2 486 6250 33,614 118,098 322,102

2 1458 31,250 235,298 1,062,882 3,543,122
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Step #5: Write the objective function Eq. (12) to minimize the sum of the square of errors

between the model predicted moments and the ones obtained from Eq. (10).

Min F nk, jð Þ¼
Xi¼m;j¼Nbins

i¼1;j¼1

μevali, j �μmodeli, j

μevali, j

 !2

(12)

Here, nk,j is the number of follicles on the kth day in j bins, i is the order of the moment

(1–6), j is the number of bins, μi, j
eval is obtained by using Eq. (10), and μi, j

model—obtained

from moment model using optimum k and α.

Step #6: Use a constrained nonlinear optimization method to obtain the values of n.
Step #7: Compare the optimum values of n obtained from this constrained optimization

method to the actual data observed for the patient.

2.5 Model validation

The model described here uses the data collected on the first and fifth days to calibrate

the model. However, if all-day data are used, the model fit is going to be much better.

Fig. 2 shows the FSD for various days observed in real practice (denoted as experi-

mental values (E)) compared to the model predictions (denoted as (M)) considering

data from considering all-day data (Fig. 2A) and considering only the two-day data

(Fig. 2B) for patient 2. Similarly, the results are presented for patient 3 in Fig. 3A

and 3B, respectively. This shows that the model performs very well for these two

patients irrespective of either two-day or all-day data. The results of these two patients

are selected as they represent two ends of the different age spectrum.
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predicted by customized model (M) for various days for patient 2: (A) patient parameters

estimated from all-day data and (B) patient parameters estimated using two-day data.
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As stated earlier, data have been gathered for 49 patients from Jijamata Hospital,

India. The data are used to study the predictive capability of the model for the final day

of stimulation. Fig. 4 presents the histogram of the ratio of final-day mature follicles

predicted by the model (nmature, M) to final-day mature follicles observed experimen-

tally (nmature, E) in real practice. Fig. 4A presents the prediction from all-day data and

Fig. 4B presents predictions from the two-day data. For most of the patients (more

than 90% of the patients), the model shows a good fit for all-day data versus 70%
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estimated from all-day data and (B) patient parameters estimated using two-day data.
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for two-day data predictions. Although the model predictions are not that good for

30% of the patients for the two-day data, it is important to find out whether the optimal

control profile predicted using the 2-day data can be still used for these patients. This

is studied in next section.

2.6 Results from parameter estimation

It has been observed that the model parameter k (follicle growth rate constant) is the

same for all patients and is found to be 22. Therefore, it can be concluded that k
is patient independent. However, α (follicle growth rate exponent) changes for each

patient. The probability distribution for αall-day and the distribution of error in α2-day
compared to αall-day is shown in Fig. 5A and B, respectively. The analysis of the out-

liers from the histograms is presented in Fig. 4A. It is observed that two patients are

outliers. Further analysis of these two patients revealed that α2 day value for both is

above�0.92. Thus, it can be said that the model is the best fit for values of alpha rang-

ing from “�0.5” to “�0.9.”

3 Optimal control for customized optimal dosage
determination

Optimal control is a method for evaluating the time-varying values of certain process

variables, also known as the control variable, which aid in achieving the desired out-

come. It falls under a special category of optimization problems in which the opti-

mization variable is a time-dependent vector instead of a single value. It has a wide

range of applications in industrial processes, unit operations, and biomedicine.
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In biomedical field, optimal control has been used for predicting cancer chemother-

apy and tumor degradation (Castiglione and Piccoli, 2007; Czako et al., 2017), drug

scheduling in HIV infection treatment (Khalili and Armaou, 2008), and for blood

glucose regulation in insulin-dependent diabetes patients (Ulas Acikgoz and

Diwekar, 2010).

There are various methods for solving optimal control problems such as calculus of

variations, dynamic programming, maximum principle, and nonlinear programming

discussed in detail by Diwekar (2008). In IVF, the control variable is the value of hor-

monal doses per day of the treatment cycle. The objective of superovulation is to

obtain a high number (maximum possible) of uniformly sized (18- to 22-mm diam-

eter) follicles on the last day of FSH administration.

3.1 Mathematical formulation

The data on superovulation cycles from the collaborators indicate that after the initial

4–5 days of FSH administration the follicle size and number plots tend to follow a

Gaussian/Normal distribution and as time progresses this distribution continues to fol-

low a Gaussian trend with a shift in the mean and variance. This distribution is used to

define the objective function in terms of the moments. The moment model for FSD

prediction and the method for deriving normal distribution parameters ( John et al.,

2007) have been used as the basis for deriving expressions for the mean and coeffi-

cient of variation.

Since the data clearly reflect a normal distribution, it is quite reasonable to assume

it as an a priori distribution for follicles and the following mean (Eq. 13) and coeffi-

cient of variation (Eq. 14) expressions can be derived in terms of moments. Here, x is
the mean follicle size, CV is the coefficient of variation.

x¼ μ1
μ0

(13)

CV¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2μ0
μ12

�1

r
(14)

Thus, the objective of superovulation in the mathematical form can be stated as to

minimize the coefficient of variation on the last day of FSH administration (CV(tf))
and the control variable shall be the dosage of FSH with time (Cfsh(t)). Here tf is
the final day of the cycle.

To customize the model for each patient, the parameters are evaluated using the

initial two-day observations of the follicle size and counts along with the FSH admin-

istered. The optimal dosage prediction for the desired superovulation outcome is rep-

resented as Eq. (15).

Min
Cfsh

CV tfð Þ (15)
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Subject to:

(i) Follicle growth term and moment model

(ii) Additional equations for the coefficient of variation (CV) and mean (x)

dCV

dt
¼ Gμ0
Cvμ1

1�μ0μ2
μ12

� �
(16)

dx

dt
¼G (17)

(iii) The final size of the follicles must not exceed 22 mm in diameter.

3.2 Solution by maximum principle

The control problem has 9 state variables resulting in 9 state equations. For simplicity

of notations “yi” is used to denote the ith state variable. In maximum principle, one

adjoint variable is introduced corresponding to each state variable. Thus, there are

9 adjoint variables resulting in 9 additional equations. Let zi be the ith adjoint variable.
The objective function is then converted to the Hamiltonian form (H), which on

expansion involves the state as well as adjoint variables. The optimality condition

for the problem is given by Eq. (22). A tolerance level is fixed for the derivative

of the Hamiltonian with respect to the control variable (dH/dCfsh) and can be written

in a more realistic manner as the condition “abs[dH/dCfsh j t] < tolerance.” Initial

values are available for the state variables, whereas final values are available for

the adjoint variables. This results in a two-point boundary value problem.

Let yi ¼ μ0μ1μ2μ3μ4μ5μ6CVx½ � then;

MaxCfsh tð Þ �y8 tfð Þf g (18)

dyi
dt

¼ f yi, t,Cfshð Þ (19)

dzi
dt

¼
X9
j¼1

zj
∂f yi, t,Cfshð Þ

∂yi
¼ f yi, zi, t,Cfshð Þ (20)

H¼
X9
i¼1

zif yi, t,Cfshð Þ (21)

dH

dCfsh

����
����
t

¼ 0 (22)

The system of equations are solved stepwise, beginning with the state equations,

which are integrated in the forward direction from starting time t0 till the end of
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the process or final time tf. After this, the adjoint equations are integrated in the back-
ward direction. Also, the optimality condition (Eq. 22) needs to be satisfied at every

time point. The details of the calculation procedure are shown in the flowchart in

Fig. 6.

3.3 Results from optimal control

As stated earlier, for days 1–4 the same dose is used, and no testing is done till 5th day.

The optimal control method is applied to find dosage from 5th day onwards using the

maximum principle. The patient parameters estimated using the two-day data are

used, and the maximum principle method is applied to determine dosage from 5th

day onwards. The optimal drug dosages for each patient are calculated, based on

the starting dose, cycle days, and the initial FSD observed in each patient. The

final-day mature follicle count using optimal control is then compared with observed

mature follicles using the dosage specified by the attending physician for these

49 patients. Since the parameters from all-day data are more accurate than two-day

data, those parameters are used with optimal control profile predicted by the two-

day data for comparison. Fig. 7 shows the mature follicle distribution optimal versus

experimental in Fig. 7A and the optimal dosage versus experimental dosage in

Fig. 7B. The cumulative dose for this patient is found to be 2662.5 IU compared to

START

Assume initial FSH dose profile Cfsh(t)

Solve

from t0 to tf  using forward integration

= f(yi, t, Cfsh) equations

= f(yi, zi, t, Cfsh) from tf to t0

dyi

dt

Solve equations

using backward integration

Compute the values of

Yes No
< tolerance

STOP

dzi

dt

dH
dCfsh

dH

t
dCfsh

dH
(t)

dCfsh
Cfshnew 

(t) = Cfshold 
(t) + M

Fig. 6 Flowchart for optimal FSH dosage evaluation using the maximum principle.
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doctor prescribed dose of 3600 IU. The results serve as an example of the significant

reduction in a dosage, which consequently reduces the costs to the patient.

The optimal control profile was calculated and customized for each patient for the

clinical data available on 49 patient cycles. The histograms of the results are presented

in Fig. 8. Fig. 8A shows the histogram of the ratio of optimal mature follicles to mature

follicles observed using physician suggested dosage. Fig. 8B shows the% of reduction

in dosage for each patient. It has been found that 98% of the patients show higher
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mature follicles for the optimal control profile than the physician specified dosage.

Most of these patients also show a significant reduction in dose requirements for suc-

cessful superovulation. This also shows that the two-day data are sufficient to predict

the optimal dosage for each patient.

Typically, older patients (age > 35 years) are prescribed dosages on the higher

side ranging from 300 to 450 IU. Even for the higher age for patient 3 (40 years),

the results show that the actual dose needed to get similar outcomes is much less than

as prescribed. Also, the starting doses are lower at 300 IU and 225 IU, thus corrob-

orating the idea that lower starting doses can also achieve similar responses in patients.

This study found no correlation between the age of patients and higher doses of

300–450 IU.

4 Overall approach for customized medicine

The model and optimal control methods are implemented in integrated software for

clinical trials. This software is called OPTIVF (Diwekar, 2018). The software uses

the initial two-day data from the patient, i.e., their FSD and hormone dosage, as an

input to the model. Optimization-based parameter estimation (iterative) of the

moment model described in Section 2 is carried out to customize the model for each

patient. The parameters then are used along with the iterative optimal control capa-

bility to find optimal drug-dosing profile for the remaining days of the cycle.

Fig. 9 shows a schematic of this procedure. Thus, daily tests are avoided, and a

reduced amount of drugs can be used to obtain significantly better outcomes.

Customized
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Dosage
profile

Objective
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Two day
follicular

and
hormone
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Optimizer for
parameter
estimation

Moment
dynamic
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Optimal
dosage
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Optimal
control

Fig. 9 Schematic of the overall approach and the steps in the OPTIVF software package.
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4.1 Clinical trial using the software

Recently, the first clinical trial was conducted in Jijamata Hospital, Nanded. The trial

involved 10 patients and was a double-blinded trial. Half of the patients were given

dosage by the attending physician, and the other half were given the dosage predicted

using this new approach using OPTIVF. Table 5 and Fig. 10 show the outcome for

one of the patients in the clinical trial. Using the model and the optimized dosage,

the follicular distribution at the end of the cycle in a clinical trial for this patient, it

has been observed that the dosage predicted by using the model is 40 % less than

that suggested by the IVF doctors (Fig. 10 and Table 5). Table 5 also shows that

the number of mature follicles obtained at the end of the cycle using the model

predicted dosage is significantly higher than that of physician suggested dosage. Per-

centage of good-quality eggs were similar from both the procedures. These results

Table 5 Comparison of optimal dosage profile with actual profile for patient 6
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FSH

Dr.
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on day 11 9≤ r≤ 12

% of

reduction in

FSH

due to

optimization

% of

reduction in

testing

due to

optimization
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Fig. 10 Clinical trial patient 3, customized dosage comparison.
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were consistent with all patients in this clinical trial. The testing requirement for

patients using the optimized drug-dosage policy predicted by OPTIVF is reduced

by 72%, and the number of follicles obtained was more than twice the number

obtained by physician predicted dosage.

5 Summary and future work

IVF is the most common technique in assisted reproductive technology. Superovulation

is a drug-induced method to enable multiple ovulation per menstrual cycle. The success

of IVF depends upon successful superovulation, defined by the number and the uni-

formly high-quality of eggs retrieved in a cycle. Currently, this step is executed using

almost daily monitoring of the follicular development using ultrasound and blood test.

The daily dosage of hormones is customized for each patient based on these tests.

Although there are general guidelines for the dosage, the dose is not optimized for each

patient. The cost of testing and drugs makes this stage very expensive. To overcome the

shortcoming of this system, a computer-assisted approach was presented for customized

medicine for IVF. The approach uses customizedmodels for each patient based on initial

two-day data from each patient to determine the outcomes. Optimal control methods are

then used on these customized models to obtain drug-dosage profiles for each patient. It

has been found that this procedure provides better outcomes in terms of a higher number

of mature follicles, reduced dosage, and reduced testing. This can reduce the side effects

of the drugs significantly. A small clinical trial supports these theoretical findings.

A user-friendly software was developed, which can provide a customized model of this

stage for each patient, which would provide a basis for predicting the possible outcome

based on the optimal drug-dosage profiles predicted by the optimal control functionality

in the software. Further work is being carried out with the doctors in the United States to

extend this approach to other protocols and for patients in the United States.
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