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Due to environmental regulations continually reducing emission quantity allowed over time,
there is a growing need for adaptable and feasible environmental monitoring, such as
emission, wastewater quality, and air pollution monitoring, for the process industry (and
surrounding communities). Alternative environmental monitoring and process monitoring
technologies based on industrial internet of things (IIoT) and artificial intelligence (AI) enable
the process industry to take a proactive approach toward the environment and asset
integrity management. The monitoring devices can be deployed in a stationary or dynamic
manner. In this study, the emerging trend and various applications of IIoT and advanced
data analytics methodologies in environmental monitoring are reviewed. An example
showing challenges and research needs in sensor placement is given. Future
directions in technology, regulation, and application have been discussed as well.
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INTRODUCTION

Advances in applications that can utilize big data and analytics are becoming more widespread
within the manufacturing sector. New approaches, including information distribution via the
industrial internet of things (IIoT) and big data analytic methodologies, allow processing
facilities to analyze data in real time and act to correct abnormal operations or mitigate asset
failures. In specific, the widespread applications of sensors combined with large data streams and key
performance indicator (KPI) dashboards enable streaming collection and visualization of
information (analyzed data) that can be utilized for monitoring and taking actions. The data
stream management can be used for setting alarms, triggering control systems, activating mitigation
actions, monitoring, and reporting for regulatory authorities and internal applications. As a result,
the IIoT platform facilitates the integration of sensors, data analytics, networks, real-time
monitoring, and informed decision making. Therefore, IIoT serves as an essential component of
the emerging digital transformation by providing minimally invasive remote asset operating
information.

In recent years, there emerged a new trend of using digital technology to better monitor pollutants
as a means of improving overall environmental quality. IIoT devices have been widely applied and
many success stories have been reported. Martínez et al. (2020) reported a low cost integrated IIoT
system for monitoring nitrate and nitrite in water with a novel ion chromatograph detection method.
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Zhu et al. (2020) proposed an IIoT-based automation system built
on top of the legacy wastewater treatment plant (WWTP)
automation system to enable remote monitoring and control.
Rezwan et al. (2019) developed a minimalist model for
monitoring working conditions of a WWTP, as well as its key
performance indicators such as PH, temperature, and turbidity.
Edmundo Guerra et al. (2020) developed an unmanned aerial
vehicle (UAV) platform to capture samples from the open air
basin of a WWTP. In addition to monitoring the quality of water,
monitoring and controlling the pollutants in air, such as volatile
organic compounds (VOCs) and hazardous air pollutants
(HAPs), are also very important for the process industries and
surrounding communities. Violation of emission can lead to void
of permit for production. The environmental regulations are
continually reducing the quantity allowed over time, therefore
increasing the demand for monitoring air and water quality
proactively, efficiently, and at low cost. In addition, IIoT
technologies have been widely used in asset management, even
for assets buried underground. For example, undetected
corrosion or erosion of the pipelines can lead directly to
catastrophic events. Using IIoT technology, Emerson’s pipeline
management solutions remotely monitor the real-time
progression of corrosion and erosion (Pipeline Integrity &
Leak, 2021).

Traditionally, pollutants in air or water are monitored via
stationary monitoring stations, or in some instances,
infrequent manual sampling. Due to the high cost of
sensors as well as maintenance of a monitoring network,
sensors can only be installed at a limited number of
locations that may lead to sparse spatial and temporal
coverage, resulting in delayed and inaccurate measurements
of pollutants. As the IIoT technologies remove the constraints
of physical connections between sensors and the processing
center, it enables the new environmental quality monitoring
methodologies based on alternative water pollutant and
emission monitoring and dynamic sensing methodologies.
Alternative monitoring technologies, such as optical and
remote sensing instruments and wireless sensors, can
monitor pollutants from a specific equipment/area/unit/
plant in a timely manner. Process monitoring technologies
based on IIoT can use big data approaches and sophisticated
cloud computing to provide solutions for operation and
emission management issues.

In this study, we will highlight the emerging trends of applying
IIoT in environmental monitoring, specifically in the areas of
advanced data analytics and sensor placement. The future
directions of such applications, including the methodologies,
hardware, and regulations, will be discussed as well.

ADVANCEMENT IN DATA ANALYTIC
METHODOLOGIES

The data analytic methods applied in environmental monitoring
are dictated by the diverse data generated from different IIoT
sensors and sensor networks. In general, their applications can be
classified into two categories:

1) Data processing for alternative emission monitoring
technologies, including various optical and remote sensing
(ORS) devices and wireless sensor network. The
representative ORS technologies include Fourier transform
infrared spectroscopy (FTIR), tuneable diode laser, ultraviolet
differential optical absorption spectroscopy (UV-DOAS),
differential absorption lidar monitoring (DIAL), cavity
ring-down spectroscopy, particulate matter LiDAR, thermal
infrared camera, solar occultation flux (SOF) monitoring, and
hyperspectral imaging. Satellite instruments have also been
used to monitor the emissions of O3, NO2, CO, HCHO, SO2,
NH3, volatile organic compounds (VOCs), and even
greenhouse gases CO2 and CH4 (Handbook, 2018; Kim
et al., 2020). To analyze these data of diverse types, such as
images and spectrum, deep learning methodologies are
employed (Zeng et al., 2016; Kamruzzaman et al., 2018;
Mishra et al., 2019). In addition, deep learning methods are
also applied to gain improved prediction accuracy for
monitoring complicated processes (Yan et al., 2020).

2) “Soft sensors,” that is, mathematical models based on past
data for predicting emissions using current process data.
These soft sensors are developed via a wide range of
machine learning methodologies, including multivariate
analysis (Garces and Sbarbaro, 2011), support vector
machine (Garces and Sbarbaro, 2011), artificial neural
network (O’Connor et al., 2012), and so on. In the area of
emission monitoring, one example is ABB-developed
predictive emission monitoring systems (PEMSs), which
can estimate all the most common pollutants from process
industry: NOx, SO2, CO, CO2, flue gas flow, etc., based on
process data such as temperature, pressure, and flow rate. It
has been successfully applied to complex process units, such as
fluid catalytic cracking (FCC) and sulfur recovery units (SRU),
in refineries (Bonavita and Ciarlo, 2014; Ciarlo, 2015). A
PEMS uses an artificial neural network to build the
prediction models. A schematic representation of the ANN
is depicted in Figure 1.

Another example is predictive flare control. Industrial flares
are used to burn off the unwanted gas during start up, shutdown,
emergency, and normal production. If not combusted completely,
large quantities of undesired intermediate products or incomplete
combustion products, such as radical precursors (e.g.,
formaldehyde), soot precursors (acetylene, ethylene, benzene),
carbon monoxide, and soot, in addition to unburned
hydrocarbons. The Environment Protection Agency (EPA)
Refinery Sector Rule (RSR) (USEPA, 2020) emphasizes
smokeless combustion with combustion efficiency (CE) ≥
96.5% and destruction and remove efficiency (DRE) ≥ 98%
for all types of flares. Due to the difficulty of measuring CE
and DRE on site, current RSR assumes that CE (96.5%), DRE
(98%), and smokeless flaring are achieved if the flares are
operated under the specific conditions: NHVcz ≥ 270 BTU/scf,
NHVdil ≥ 22 BTU/ft (Zhu et al., 2020), and vent gas velocity Vtip <
Vmax & Vtip < 400 ft/s. Flare performance is influenced by many
operating parameters. Simple and clear guidelines for smokeless
flaring under compliance remain elusive yet. Professor Helen Lou
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and her team at Lamar University have been using big data
analytics and machine learning algorithms to predict the
performance of flaring, including combustion efficiency and
opacity (Lou et al., 2019). The goal is to identify optimal flare
operating parameters that can meet compliance with minimal
operating cost. The schematic of predictive flare control is
depicted in Figure 2.

In the past, the flare operators have the tendency of adding too
much assist steam or assist air to suppress smoke at the expense of
DRE and CE. Then, in order to comply with the requirement of
NHVcz and NHVdil, an excessive amount of supplemental fuel
(usually natural gas) has to be added. The addition of steam, assist
air, and supplemental fuel increases the flare operating cost.
Actually, the value of NHVcz increased with less assist steam.

Flaring can meet compliance with less assist steam, assist air, and
supplemental fuel. Case studies were conducted using historical
data. It was found that operating cost can be saved significantly,
with accurate prediction of the flaring performance.

By combining alternative emission monitoring technologies
with process monitoring technologies based on IIoT, such as
PEMS and the predictive flare control method, the process
industry can utilize process data and emission data seamlessly
to reduce emissions, minimize potential risks, and achieve
operational excellence.

The “connected plants” that use sensors and digital assets to
monitor and control process for product quality and process
safety already generate significant amount of valuable data. The
data can be used for plant optimization and asset utilization. The

FIGURE 1 | Feed forward neural network schematic (Ciarlo, 2015).

FIGURE 2 | Schematic of predictive flare control (Lou et al., 2017).
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integration of additional sensors for environmental monitoring is
complementary for the data pool. Also, the process knowledge
and simulations can transform the data to actionable insight for
pervasive monitoring. For instance, emission monitoring for a
stack of a refinery kiln can be tied in with fuel gas flow rate, other
burner parameters and data that would be used by data
reconciliation algorithms for predictive maintenance, and any
troubleshooting for reducing the emission or burner maintenance
(e.g., decoking).

ADVANCEMENT IN DYNAMIC SENSING

In addition to alternative emission monitoring, IIoT can be easily
integrated with dynamic sensing, a new monitoring technique
that adjusts the locations of portable sensors in real time to
measure the dynamic changes in air and water quality. Unlike
stationary monitoring stations, real-time sensor placement
optimization algorithm will allow the assessment of
spatial–temporal variability of pollution. While the number
and emission intensity of sources determine the volume of the
chemical species, it is the flow, temperature, humidity, sunlight,
etc., that determines the fate and transport of the species. The
resulting concentrations of species change spatially and
temporally because of these physical and chemical processes.
Therefore, dynamic sensing is not only more economic but also
more efficient for environment monitoring.

Automobiles and drones are typical platforms carrying
portable sensors. Recently, the US government approved
regulations for use of commercial drones. With the
advancement of drone technologies, it is possible to measure
the dynamic changes in air or water quality with portable sensors,
which change positions in real time (de Almeida Oliveira and
Godoy, 2016; Diwekar and Mukherjee, 2017; Tmušić et al., 2020).
Theories and framework developed in sensor placement have
been widely applied for monitoring water bodies, water security
networks, advanced power systems, and other infrastructure
issues such as security of the power grid, pollutant release
from process industries, and so on.

Sensor placement and route planning frameworks are
important to fully realize the potential of IIoT platform with
mobile sensor systems. It typically consists of a model predicting
the spatiotemporal distribution of pollutants and an optimizer
identifying optimal sensor locations/routes. The AERMOD
developed at US EPA can predict the fate and transport of the
pollutants (Fox, 2021). An advanced version of AREMOD,
stoAERMOD, was developed at Vishwamitra Research
Institute (VRI), which can model the distribution of pollutants
by incorporating stochastic inputs in terms of both sources as well
as meteorological data, for example, wind speed and temperature.
Spatiotemporal Gaussian processes have also been employed to
model the environmental field (Sun et al., 2019). Due to the
tremendous computational time required, algorithms developed
for real-time monitoring of the fate and transport of chemical
species have limited success. Prof. Diwekar and her team have
developed an efficient and robust method for solving the dynamic
sensor placement problem using Better Optimization of

Nonlinear Uncertain Systems (BONUS) algorithm (Sahin and
Diwekar, 2004). Nguyen et al. (2018) proposed a practical and
feasible polynomial algorithm for sensor placement based on
Gaussian processes.

An example of using dynamic sensing framework for
monitoring the pollutant distribution as well as its exposure to
human population in the city of Atlanta has been reported by
Mukherjee et al. (2020). In this example, two mobile sensors are
employed for this task and their locations are planned in real time
according to the changes of factors such as diurnal fluctuation of
the number of automobiles, wind speed, and temperature. The
objective is to determine the optimal locations of a network of
sensors so that maximum observability of the pollutants can be
achieved. The observability of the sensor networks is measured
with Fisher information (FI), which is a probabilistic function.
(Lee and Diwekar, 2012). The spatiotemporal sensor positions in
real time can be solved as an optimization problem, solved for
different time periods through maximizing FI subject to the fate
and transport models of the pollutants under the weather, as well
as traffic uncertainty.

The dynamic location of the sensors at five different time of
the day are shown in Figure 3.

Algorithm development for real-time spatiotemporal sensor
placement for environmental monitoring is a challenging task.
Several factors caused by the properties of the environment that
include weather uncertainties and the sensing phenomena need
to be considered (Schoellhammer et al., 2006). The uncertainty
associated with the system demands a stochastic optimization
method. Portable low-cost sensors for dynamic sensing is a new
area of research for environmental monitoring. Drone-based
monitoring is the future of dynamic monitoring of the
environment. In case of a relatively small controlled
system, dynamic environmental monitoring has also been
proposed using intelligent tendril robots (Nahar, 2017).
Traditionally, optimal sensor location is determined based
on pollutant concentration. Further investigations can be
made for the development of sensor placement algorithms
in applications such as target tracking and identification. Also,
algorithm for exposure assessment needs to be developed for
actual impact assessment. Presently, optimal sensor
placement for environmental monitoring is limited to two
dimensional analysis. Potential research in the future may
include taking into consideration three dimensional analysis.
Three dimensional spatial analysis can potentially improve
the accuracy of prediction. Sophisticated machine learning
algorithms that optimize sensor position in an intelligent
manner is a promising area of research that needs
attention in the future (Nahar, 2017; Semaan, 2017; Wang
et al., 2019).

FUTURE DIRECTION

In addition to the recent progress in data analysis and sensor
placement for IIoT in environmental monitoring, there are some
new directions worth highlighting in terms of technology,
application, and regulation.
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As more and more IIoT sensors can collect audio, image,
video, text, and even social media data for predictive
maintenance, risk reduction, trend prediction, etc., the variety
of the data sources needs to be addressed. Therefore, sensor
fusion or information fusion methodologies are applied on top of
the data analytic methodologies for individual data schemes to
combine multi-rate, multi-resolution, and heterogeneous data
together and improve the robustness of inference. Wang and
Chiang (2019) proposed a judicious fusion framework for
combining multi-rate sensor data with different qualities to
monitor chemical plant performance. Qin et al. (2012)
developed a sensor fusion–based monitoring system consisting
of ultraviolet–visible spectroscopy UV/VIS spectrometer and
turbidimeter to monitor wastewater quality. A sensor fusion
application combining images and process sensor data for
monitoring toxin level in WWTP has been reported (Strelet
et al., 2021). Schneider et al. (2017) achieved accurate near
real-time air quality monitoring from multiple low-cost
sensors using geostatistic-based sensor fusion methodology
that merges sensor data and predictions of urban-scale air
quality data. ABB has also reported a fault-resilient PEMS
framework to identify and reconcile the faulty sensor readings
for emission monitoring (Angelosante et al., 2018).

The increasing number of sensors also casts higher demand for
data transferring and processing. Edge computing is a distributed
information technology (IT) architecture in which client data are
processed at the periphery of the network, as close to the
originating source as possible. Introducing edge computing in

IIoT can significantly reduce the decision-making latency, save
bandwidth resources, and to some extent, protect privacy.
Applications include, but are not limited to, smart grids,
manufacturing, workplace safety, intelligent connected vehicles
(ICV), and smart logistics. (Qiu et al., 2020). Many cloud
computing providers provide edge computing platforms. For
example, AWS FreeRTOs (FreeAvailable at: h, 2022) is an
open source, real-time operating system for microcontrollers
used in IIoT.

Regarding the innovations in hardware, microcontrollers
have been used to make small, low power edge devices,
which are easy to program, deploy, secure, connect, and
manage. For example, Andino Systems provides innovative
solutions for the usage of Raspberry Pi PCs in industrial
environments.

Cyber security is another area that attracts research interest.
To widely apply IIoT system, it is essential to address the concern
about information security, the consequences it led to, forgery,
and leaked information. Recently, blockchain technology that
enables trusted record transactions has been applied to
environmental monitoring with IIoT system to encrypt the
collected and transferred information (Han et al., 2019). With
the development of information security, such concerns from the
process industry will be mitigated. The increasing acceptance of
cloud computing services in the process industry adds more
optimism to the future of IIoT in environmental monitoring.
The former faced the concern of information security as well but
addressed the concern with advancement in security

FIGURE 3 | Optimal sensor placement for Atlanta, Georgia, using Fisher information (FI) based on particulate matter (PM) concentration, at different hours of the
day. The x and y coordinates represent the distance from the center of the city and the color represents the intensity of FI.
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technologies. A similar process can be expected in the adoption
of IIoT.

In addition to the technological progress, regulations and
economic incentives are even more influential factors dictating
the application of IIoT in environmental monitoring. This study
has been focused on monitoring sensors (stationary and
dynamic), data collection, data analytics, and the IIoT transfer
of data and information to databases and KPI dashboards. What
has not been covered is what action or regulations should be
considered from this new insight into water and air pollutants.
Any regulation should have sufficient data and analysis to the
extent of the problem and the regulations to be applied tomitigate
harmful pollutants from the environment must be considered. In
addition, any regulations would drive future research and
development into lower cost and dynamic sensors for added
flexibility to monitor multiple areas.

One good practice to highlight is the “US EPA Citizen Science
Program” that collaborates with the public and EPA to connect
on environmental science and protection (Han et al., 2019). The
program utilizes a large amount of inexpensive sensors to identify
research questions, collect and analyze data, interpret results and
suggest recommended actions, make new discoveries, and
develop technologies and applications—all to understand
better and solve environmental challenges.

The pace of industry embracing the IIoT technologies depends
on how big the incentives are. One of the common concerns is the
return to investment ratio, which is common in all artificial
intelligence–related applications in the process industry. As
forecasted by Gartner, 50% of the AI investment will be
measured by return on investment (Goasduff, 2022). Some
promising potential applications would be the processes facing
strict environmental regulations. With the real-time, precise, and
robust measurements from the IIoT system and timely corrective
actions enabled, such processes can be operated in regimes closer
to the regulation limit but with higher profitable margin. The

lower cost and easier installation of the IIoT system compared to
the wired system are also incentives for its application. Another
potential area for application is safety. One example is H2S
monitoring within a processing facility and along the fence
line to ensure this deadly toxic gas is identified and alerted
before harming anyone (Flame and Gas Detection, 2022).

CONCLUSION

The new monitoring technologies on IIoT are now available and
feasible to capture environmental and process data to perform
analysis and examine corrective actions if warranted or regulated.
They enable real-time data and analysis to provide valuable
information about environmental issues, when they occur and
where, and for how long. The new trend of applying IIoT for asset
management and environmental monitoring is critical to the
process industry, surrounding communities, and regulatory
agencies.

With the advancement in wireless sensors, microcontrollers,
5G or 6G in the future, and data analytic methodologies to handle
different data types, new frontiers beyond the process industry of
applying IIoT techniques will continue to emerge.
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