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Abstract: Natural gas processing requires the removal of acidic gases and dehydration using absorp-
tion, mainly conducted in tri-ethylene glycol (TEG). The dehydration process is accompanied by
the emission of volatile organic compounds, including BTEX. In our previous work, multi-objective
optimization was undertaken to determine the optimal operating conditions in terms of the process
parameters that can mitigate BTEX emission using data-driven metamodeling and metaheuristic op-
timization. Data obtained from a process simulation conducted using the ProMax® process simulator
were used to develop a metamodel with machine learning techniques to reduce the computational
time of the iterations in a robust process simulation. The metamodels were created using limited
samples and some underlying phenomena must therefore be excluded. This introduces the so-called
metamodeling uncertainty. Thus, the performance of the resulting optimized process variables
may be compromised by the lack of adequately accounting for the uncertainty introduced by the
metamodel. In the present work, the bias of the metamodel uncertainty was addressed for parameter
optimization. An algorithmic framework was developed for parameter optimization, given these
uncertainties. In this framework, metamodel uncertainties are quantified using real model data to
generate distribution functions. We then use the novel Better Optimization of Nonlinear Uncertain
Systems (BONUS) algorithm to solve the problem. BTEX mitigation is used as the objective of the
optimization. Our algorithm allows the determination of the optimal process condition for BTEX
emission mitigation from the TEG dehydration process under metamodel uncertainty. The BONUS
algorithm determines optimal process conditions compared to those from the metaheuristic method,
resulting in BTEX emission mitigation up to 405.25 ton/yr.

Keywords: TEG dehydration process; BTEX mitigation; metamodeling uncertainty; support vector
regression (SVR); BONUS algorithm; Value of Stochastic Solution (VSS)

1. Introduction

Natural gas (NG) obtained from oil and gas wells needs to be sweetened, followed
by dehydration for preprocessing to meet sales gas requirements. Dehydration is mainly
performed by absorption in tri-ethylene glycol (TEG). The process consists of an absorp-
tion column, a flash tank, a stripping column, and a reboiler. The wet gas from the NG
sweetening process contains, in addition to water, different volatile organic compounds
(VOCs), such as toluene, benzene, ethylbenzene, and isomers of xylene, known as BTEX,
and is transported to the absorption column where it comes into contact with lean TEG.
Rich TEG with water and BTEX flows through a flash tank from the absorption column to
the regeneration column. The total BTEX and other VOC emissions from the dehydration
process originate from the flash tank and regeneration unit. In our previous work, meta-
models were developed from the simulated process data and metaheuristic optimization
to optimize different process variables for BTEX emission reduction and maintain the
dry gas specification [1]. The uncertainty involved in the optimization process is either
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related to data, including inlet feed composition, flow rate, or metamodeling [2]. The
metamodel-based design of the system treated the metamodel as the real model, ignor-
ing the influence of metamodeling uncertainty. Thus, the resulting optimized process
variables may be compromised by the lack of adequately accounting for the uncertainty
introduced by the metamodel. In the present work, the bias of metamodel uncertainty was
addressed for process variable optimization. An algorithmic framework was developed
to address the problem of process variable optimization under metamodel uncertainties.
In this framework, we use the novel Better Optimization of Nonlinear Uncertain Systems
(BONUS) algorithm to solve the problem [3,4]. The objective of the optimization process is
to mitigate BTEX emission with dry gas water content as a constraint. The effectiveness of
our algorithm is shown by the increased value of the stochastic solution (VSS) at lower dry
gas water content.

Aromatics are often present in natural gas in trace amounts. Research findings of
the CDC revealed severe health impacts of BTEX [5]. BTEX compounds are toxic in
nature, and can produce neurological complications and carcinogenic effects. During the
dehydration process, water and BTEX are absorbed in glycol in the absorption unit, which
is later released to the atmosphere from the regenerator. Thus, sustainable natural gas
processing requires the mitigation of BTEX emissions. The US Clean Air Act Amendments
(CAAA) from 1990 regulates BTEX emissions of more than ten tons per year for any given
facility, or more than twenty-five tons per year for the total hazardous air pollutants (HAP).
Accordingly, several dehydration plants are classified as major BTEX polluters [6,7]. TEG
has the highest BTEX affinity among different glycol dehydrates, which results in maximum
emissions from the process.

The existing literature on optimizing the natural gas dehydration process primarily
comprises sensitivity analysis for determining the influence of different process parameters.
Gupta et al. [8] carried out a sensitivity analysis to obtain process conditions that can
optimally reduce loss of TEG. A parametric study was performed by Gandhidasan [9] to
determine the effect of parameters such as pressure, temperature, and TEG circulation rate
on the design of the dehydration unit. Rahimpour et al. [10] improved the dehydration
unit’s performance using process simulations. Jacob [11] found that the stripping gas flow
rate has a larger impact on drying than the reboiler temperature by studying the effect of
the number of plates in the absorber and TEG circulation rates on dry gas water. Ranjbar
et al. [12] used relative sensitivity analysis to optimize the TEG plants. HYSYS® process
simulator data was used for their analysis. Kamin et al. [13] used Design Expert software
and the HYSYS® simulator for data generation and subsequent optimization of the glycol
circulation rate, reboiler temperature, and the number of trays in the absorber. Neagu and
Cursaru [14] considered the effect of the reboiler temperature and stripping gas flow rate,
and found that the optimum stripping gas flow rate can enhance TEG regeneration and
reduce dry gas water content. Chebbi et al. [15] optimized both the process and design pa-
rameters. TEG concentration and circulation rate, and the number of trays in the absorber,
were optimized to minimize the capital cost, TEG pumping, utility requirements for the
reboiler, and stripping gas rate. Mukherjee and Diwekar [1] performed a multi-objective
optimization (MOO) of the dehydration process with economic and environmental objec-
tives using a metamodel of the process. Traditionally, sustainable process design estimates
design parameters based on economic, environmental, and societal aspects, using process
sustainability assessment tools in a retroactive manner [16,17]. Traditionally, greenhouse
gas (GHG) emissions are considered for environmental impact assessment [18,19]. Mukher-
jee and Diwekar [1] addressed environmental sustainability through BTEX mitigation with
process parameter optimization. Process data was generated using the ProMax® simulator,
which was used to derive the surrogate model for optimization. However, the surrogate
model considered was subjected to metamodeling uncertainty, which arises due to the error
between the process model and the metamodel at unsampled locations [20]. Metamodeling
uncertainty is often overlooked in model-based optimization. To address the MOO problem
under metamodeling uncertainties, this study developed a new framework called MOO
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under metamodeling uncertainties (MOOMU). The selected process data are employed to
construct the support vector regression (SVR) metamodels of the objective and constraint.
Hammersley sequence sampling (HSS) of the error distributions is adopted to quantify the
impact of metamodeling uncertainties. The MOOMU framework is employed to explore
the optimum TEG dehydration process.

Essential variables differ among chemical systems due to the difference in their type,
scale, and properties. In cases in which many variables are present, important variable
selection is required; variables can be selected using multivariate statistics or machine
learning [21–23]. In the present problem, important variables selected through lasso, as
found in Mukherjee and Diwekar (2021), were used [1]. Surrogate models are generated to
quantify the effects of the important variables on the corresponding dependent variables
of the process. In the present work, support vector regression (SVR), which is a machine
learning technique, was applied for metamodel generation. The SVR-based metamodel
thus developed is used for the optimization of the process with the BONUS algorithm.
Through optimization, the optimal process operating variables that minimize BTEX/VOC
emissions at the different dry gas water content limits were determined.

Metamodel uncertainty arises due to the dispersed nature of the input-output data
used for developing the model. In this work, optimization of the input space of the SVR
metamodel was performed with a stochastic optimization known as Better Optimization for
Nonlinear Uncertain Systems (BONUS). The BONUS algorithm uses a reweighting scheme
to obtain the value of the stochastic objective function and constraints and derivatives.
In our previous work, the metamodel generated from the simulated data was used for
optimization without considering its uncertainty. In this work, we quantify the uncertain-
ties as error function distributions. The objective function and constraints were changed
from deterministic values to expected values. Previously, BONUS has been extensively
used to solve chemical engineering problems, including network optimization [24] and
spatiotemporal sensor placement [25,26]. In the present work, we developed an algorithmic
framework for a robust metamodel-based chemical process optimization that significantly
reduces the impact of metamodel uncertainty using BONUS.

This paper is organized as follows. The next section describes the dehydration process
in natural gas processing and emissions from the process. The solution methodology
section explains process simulation for data generation, modeling using SVR, and multi-
objective optimization using BONUS. This is followed by presentation of the results from
the application of the SVR-BONUS-based algorithm for dehydration process optimization
and the effect on different process variables, followed by conclusions.

2. Materials and Methods
2.1. Problem Description

Natural gas processing comprises two process units: acid gas removal and dehydra-
tion. Dehydration can be performed by different methods, including via the use of liquid
hygroscopic substances such as glycols, solid hygroscopic substances, and condensation.
Glycol as a dehydrating agent has several advantages, including dehydration capacity,
VOC absorption, and loss. TEG is the most-used glycol in industrial applications and
is the subject of our analysis. TEG dehydration process has an absorption section and a
stripping section. Lean TEG entering the tower in the absorption section absorbs water
from wet gas. Rich TEG solvent leaving the absorber is regenerated by a stripper moister
in a regenerator. Stripping gas is injected into the reboiler by drawing from the dry gas
stream. The regenerated TEG is sent back to the absorber for desiccation. A schematic
diagram of the TEG dehydration process is shown in Figure 1.
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Figure 1. Schematic diagram of the NG gas dehydration process.

The flash tank and the stripping column release water vapor and aromatics absorbed in
the absorber into the atmosphere. BTEX/VOC mitigation can be achieved by incineration,
flaring, or condensation; these approaches are not environmentally friendly. Incineration
or flaring can cause air pollution. Condensation results in BTEX/VOC pollution of water.
Break et al. [27] optimized the process parameters and significantly reduced BTEX/VOC
generation. Their study found that the glycol circulation rate and stripping gas rate
are important parameters that impact BTEX/VOC emission. In addition to these two
process variables, reboiler temperature and flash tank pressure also impact BTEX and VOC
emission.

The process variables that affect BTEX/VOC emission also influence the dew point
of the dry gas. Thus, we have a multi-objective optimization problem where the system
must fulfill the emission goal and meet the water dew point requirements. Traditionally,
the developed metamodel is used for optimization. Different optimization methods can
be used for data-driven model generation and optimization of the process variables. The
optimization process assumes the data-driven model is a true representation of the process,
ignoring metamodel uncertainty. In the present work, Better Optimization for Nonlinear
Uncertain Systems (BONUS) was used for optimization [4]. Finally, the optimal solution
was found from the Pareto front generated using multi-objective optimization.

2.2. Solution Methodology

The framework for process simulation and optimization with BONUS is shown in
Figure 2. Here MATLAB® is used as a controller, and the FORTRAN module is used for
multi-objective optimization (MOO) and ProMax® is used for process simulation. Input
variables are generated by MATLAB®. These are selected from a uniform distribution using
Halton sequence-based quasi-random sampling. The uniformity property is important
in sampling [28]. The Halton sequence has high dimensional uniformity [29]. The perfor-
mance of the metamodel increases manifold through this efficient sampling technique [30].
The metamodel is generated with the output responses from the process simulation data.
The uncertainty associated with metamodeling is quantified by the probability distribution
of errors found from the difference with the process simulated outputs. The optimization is
performed by propagating the uncertainty through the metamodel to identify the optimal
parameters to mitigate BTEX emissions.
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Figure 2. Framework for the simulation, data-based modeling, uncertainty quantification, error propagation, and optimiza-
tion of the natural gas dehydration process.

The steps in the natural gas process response generation and optimization for BTEX
mitigation are as follows:

1. Identification of the decision variables of the natural gas (NG) processing system and
defining them (with their range).

2. Input sample space generation using the Halton sequence in MATLAB®.
3. NG process response generation using the ProMax® model.
4. SVR-based metamodel generation for the objective and constraints using MATLAB®.
5. Error estimation and uncertainty quantification using kernel density estimator (KDE)

in MATLAB®.
6. Predictor and error space sampling and error propagation through the metamodels

in MATLAB®.
7. Stochastic multi-objective optimization under specified constraints and bounds for

the Pareto optimal solution using a FORTRAN inhouse module.

2.2.1. Acid Gas Removal Unit Process Simulation

Natural gas processing comprises acid gas removal unit and a dehydration unit, as
shown in Figure 3. The acid gas removal unit removes carbon dioxide and hydrogen
sulfide. Water is removed in the dehydration unit. In this work, ProMax® software is
used to simulate acid gas removal and dehydration units. Detailed descriptions of the
dehydration unit for which optimal conditions were studied are presented. Results from
the ProMax® simulator are presented in the supporting document.
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Figure 3. Block flow diagram of natural gas processing.

In this work, acid gas removal is performed with the amine absorption process. Methyl
di-ethanol amine (MDEA) is used as an absorbent. Sweet gas from the acid gas removal unit
is dehydrated to meet the pipeline specification of 4 to 7 lbm/MMscf [31]. As mentioned
previously, tri-ethylene glycol (TEG) absorption is selected as an absorbent for dehydration.
Figure 4 shows the ProMax® process flow diagram of the TEG dehydration process. Process
conditions are from the ProMax® reference example model Ex05-TEG Dehydration [32].
Details of the process condition can be found in Mukherjee and Diwekar, 2021 [1]. In the
present work, sampling from a uniform distribution of the decision variables’ range is
performed, and the resulting impact on emission and drying is observed. Our analysis
considers the total BTEX emission from the Water Gas stream from the stripping section
and the Flash Gas stream from the flash tank.
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2.2.2. Data Generation and Process Optimization

The present work aims to determine the optimal operating conditions in a glycol
dehydration unit that will minimize BTEX emission and fulfill the dew point requirement
using an efficient data-driven optimization method. In most TEG dehydration plants, the
glycol circulation is more glycol than the minimum required. Thus, it is imperative to
optimize circulation. The other process variables, including stripping gas flow rate, reboiler
temperature, absorber pressure, flash gas pressure, and lean solvent temperature, may also
impact BTEX/VOC emission. In this work, as identified by Mukherjee and Diwekar (2021),
the process variables that have a significant impact on BTEX emission are used [1].

For a natural gas dehydration unit, two different goals need to be achieved. The pro-
cess should have a high drying efficiency and be environmentally friendly with minimum
toxic release, resulting in a multi-objective optimization (MOO) problem. The solution of
MOO is typically achieved by quantifying the trade-offs between the two conflicting objec-
tives. The economic objective, drying efficiency, and the environmental objective, BTEX
mitigation, are conflicting in nature. Thus, the impact of the different process variables
can show completely different trends. MOO is solved by either preference-based methods
or generating methods [33]. The weighting and constraint method, as used in the present
work, is a generating method. Here we can generate a set of solutions known as the Pareto
set. The Pareto set provides the trade-off surface between the conflicting objectives. Our
goal is to minimize the emission within the dry gas water content specifications, which is
between 4 and 7 lbm/MMscf [31]. The ε− constraint method that shows the Pareto points
is used.

The process optimization objective in the present problem needs to find the optimal
values of the process variables where the BTEX emission (yBTEX). is minimized while maxi-
mizing drying, i.e., minimizing dry gas water content (yDryW). The constraint optimization
method is formulated as:

minimize yBTEX = fBTEX

(
x, w fBTEX

)
(1)

Subject to yDryW ≡ fDryW

(
x, w fDryW

)
≤ εDryW (2)

hI(x) = 0 I ≥ 0 (3)

gJ(x) ≤ 0 J ≥ 0 (4)

li ≤ xi ≤ ui i = 1, 2, . . . ..n. (5)

where the objective functions yBTEX and yDryW denote BTEX emission and dry gas water
content respectively, x = [x1, x2, . . . ., xn]

T is the n− dimensional vector of process operating
variables, fBTEX is the function correlating BTEX emission and fDryW is that correlating
dry gas water content with the inputs estimated with machine learning, and w fBTEX and
w fDryW are the parameter vector of the functions fBTEX and fDryW respectively; h and g are
equality and inequality constraints, respectively, and ui and li are the upper and the lower
bound of xi, respectively. Equations (1)–(5) describe an ε-constrained method.

The optimization problem is solved multiple times by changing the value of the param-
eter on the right-hand side as in Equation (2) to generate the Pareto set. The optimization
is performed in two steps. Firstly, the support vector regression-based process models,
fBTEX

(
x, w fBTEX

)
and fDryW

(
x, w fDryW

)
, is developed, followed by error analysis with

estimation, uncertainty quantification, variable sampling error propagation, and finally
optimizing the input space (x) of the process using BONUS to minimize the objective
function as given in Equation (1).

2.2.3. Metamodel Generation with Support Vector Regression (SVR)

Metamodeling of complex chemical process phenomena has been used in multiple
applications [34]. Traditionally, metamodels are statistical or polynomial in nature. The
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metamodel adopted in this work is based on support vector machines (SVMs), known as
support vector regression (SVR). SVM is a statistical learning algorithm [35,36]. A function
relating the input variables and the response of the entire natural gas processing system
was created using SVR. Generally, metamodel-based optimization of a process using either
gradient-based methods or metaheuristic techniques will assume that there is no error
associated with the model. Due to limited real plant or simulated data, the metamodel thus
developed is subject to an error, leading to a suboptimal solution. In this work, we used a
rigorous error analysis method to overcome the uncertainty associated with metamodel
uncertainty.

2.2.4. Uncertainty Quantification

The data-driven metamodel of a chemical process often uses a small number of actual
plant or simulated data to construct the models. However, due to the limited data, the
metamodel is developed on a particular region of the entire design space, and errors are
associated with the model. For the present problem, the BONUS optimization algorithm
adopted uncertainty associated with the model for optimization. In the first step, the
objectives obtained from the ProMax® process simulation (because we are considering
ProMax simulation as the actual plant simulation here) are compared with those from the
SVR metamodel for error estimation. For example, the percentage error associated with
BTEX emission (errBTEX) and with the error in dry gas moisture content (errorDryW) is:

errBTEX =

∣∣∣∣∣∣
Yprocess simulation

BTEX − fBTEX

(
x, w fBTEX

)
fBTEX

(
x, w fBTEX

)
∣∣∣∣∣∣× 100

errDryW =

∣∣∣∣∣∣
Yprocess simulation

DryW − fDryW

(
x, w fDryW

)
fDryW

(
x, w fDryW

)
∣∣∣∣∣∣× 100 (6)

The uncertainty associated with the metamodel is then quantified with probability
using kernel density estimation (KDE). Similarly, error estimation is also undertaken for dry
gas water content errDryG and the uncertainty is quantified with kernel density estimation.
These uncertainties are presented as distributions in Figure 5. Thus, we can ascertain the
process performance at corresponding process variable set points considering uncertainty.
Details of the metamodel generation using SVR are described in Mukherjee and Diwekar,
2021 [1].

2.2.5. Stochastic Optimization Using BONUS

The uncertainty associated with the metamodel has converted the problem into
stochastic optimization, as given below.

minimize yBTEX = E
(

fBTEX

(
x, w fBTEX

))
(7)

subject to yDryW ≡ E
(

fDryW

(
x, w fDryW

))
≤ εDryW (8)

E(hI(x)) = 0 I ≥ 0 (9)

E
(

gJ(x)
)
≤ 0 J ≥ 0 (10)

where E is the expected value. The objective function and the constraint are probabilistic in
nature. A generalized approach involves capturing uncertainty through a sampling loop
that is embedded within the optimization iterations that decide the decision variables, as
shown in Figure 6.
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Figure 6. Generalized calculation procedure for a stochastic optimization problem.

Here, the outer optimization loop finds the values of the decision variables, and the
inner loop obtains a probabilistic representation of the objective function and constraints
using the sampling loop or scenario loop. For each iteration, the decision variables selected
by the optimization loop are used in the inner loop where a sample set or scenario set of
uncertain variables is generated, and the model is run for each of these sample (scenario)
points to obtain probabilistic objective and constraint values. The derivative information is
also needed for nonlinear programming problems, which involves perturbation of each
decision variable, and also to perform the sampling. The computational burden of this
method is heavy. The Better Optimization of Nonlinear Uncertain Systems (BONUS)
algorithm was proposed by Sahin and Diwekar (2004) [3] to avoid this problem.

BONUS requires the sampling loop to be run only for the first iteration (Figure 6). In
this first iteration, the decision variables (the four variables in our problem) are assumed
to have uniform distributions between upper and lower bounds. Specified probability
distributions of uncertain variables (the error distribution of the two predicted variables),
together with the uniform distribution of the decision variables, form the base distributions
for analysis and are used in the first iteration. As the optimization proceeds, the decision
variables change, and the underlying distributions for the objective function and constraints
also change. Here, instead of again using the sampling loop, a reweighting scheme based
on the ratios of the probabilities for the current and the base distributions is used to
determine the values of the objective function and constraints for that iteration. Please refer
to Figure 7 for the reweighting approach. To ensure a smooth function for the probabilities,
we approximate the distributions using kernel density estimation techniques. Please refer
to Diwekar and David (2015) [4].
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We used the Hammersley sequence sampling (HSS) for the initial base distribu-
tions in this problem. The BONUS algorithm is a sequential quadratic programming
(SQP) algorithm that uses the reweighting scheme to estimate the objective function
and gradient at each iteration instead of the sampling loop. The Hessian is approxi-
mated using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula. The objective of
the BONUS optimization is to find the n− dimensional optimal decision variable vector,
x∗ =

[
x∗1 , x∗2 , . . . ., x∗n

]T that represents the optimal process conditions where the process
output, E(yBTEX), is minimized while fulfilling the constraint E(yDryW) ≤ ε. The general
procedure involved is described below.

1. Off-line Computations (generating base distributions and objective function data from
metamodel): Obtain independently distributed samples j = 1, Nsamp for metamodel
uncertainty erri(where i represents BTEX for BTEX emission or DryG for dry gas
water content) and decision variables x with uniform distribution between upper and
lower bounds. These samples are used to generate the design prior density function
Pp(x, erri) using kernel density estimation (KDE). Calculate the objective function yi
(and the probabilistic constraint) for each sample. For example, the sampled error
errBTEX is used to generate objective function yBTEXfor estimated BTEX emission as:

yBTEX = fBTEX

(
x, w fBTEX

)
×

(
1 +

errBTEX
100

)
(11)

Similar estimation is also undertaken for dry gas water content yDryG.
2. On-line Computations (using BONUS reweighting scheme to solve the BTEX minimiza-

tion problem):

a. At each iteration k, the decision variables xk (in the first iteration, the initial value
of decision variables is given), define a narrow normal distribution around this
point (see Figure 6) and draw samples of xk from it. Use samples to generate the
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design distribution Pd(x, erri) using KDE. Estimate the objective functions and
constraint (expected value E) using the following reweighting formula:

Vi

(
xk
)
= E(yi(x, erri)) =

Nsamp

∑
j=1

ωk
i,jyi

(
xk, erri

)
(12)

where

ωk
i,j =

Pd
(

xk
j

)
erri/Pp

(
xk

j

)
erri

∑
Nsamp
jj=1 Pd

(
xk

jj

)
erri/Pp

(
xk

jj

)
erri

(13)

and sastisfy
Nsamp

∑
j=1

ωk
i,j = 1. (14)

b. Perturb the decision variable xk and use the reweighting scheme to estimate
Vi(xk + δ xk). Find the gradient and KKT conditions. If KKT conditions are
satisfied, terminate, go to step 2.c.

c. SQP computation: Use the gradient to compute the Hessian approximation Hi
k

using the BFGS formula and compute step ∆x for decision variables by solving
the quadratic program (QP):

min
∆x
∇Vi(xk)

T
∆x + ∆x T Hi

k∆x (15)

s.t. xk + ∆x (16)

Cut the step if necessary to obtain a new iterate xk+1 = xk + α∆x with α ∈ (0, 1).
d. Go to step 2.a.

This problem has multiple local optima, as we observed when different initial values
of the decision variables (four process variables) were given. We obtained the different
sets of initial values using Latin Hypercube Hammersley Sampling. The best solution is
selected as the one with the minimum BTEX emission at a given constraint of dry gas water
content.

Figure 8 shows the flow diagram starting with the development of a metamodel-
based optimization of the natural gas dehydration unit considering metamodel uncertainty.
The process has seven steps: finding the uncertain variables and their operating range;
input dataset generation; process simulation for output data generation using ProMax®;
metamodel generation using SVR; error estimation and uncertainty quantification using
KDE; input space; and error sampling, error propagation, and stochastic optimization using
BONUS. The metamodel for optimization thus developed using uncertainty quantification
is used to generate the Pareto optimal points by the ε− constrained method. The results
from the BONUS optimal points are compared with those from SVR-EACO to find the
Value of Stochastic Solution (VSS). Because we assume the ProMax® simulation as the real
plant data, the optimal points obtained from the two methods are evaluated using ProMax®

simulation.
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3. Results

Five hundred scenarios were used for the metamodel generation. The data are pro-
vided in the supplementary material. Table 1 shows the two scenarios, from these 500 sce-
narios simulations, with the highest amount of dry gas water content and BTEX emission.
The first scenario shows that BTEX emission can be as low as 65.58 ton/yr with the corre-
sponding moisture content of dry gas of 13.89 lbm/MMscf. This value of water content is
higher than the maximum permissible limit of 7 lbm/MMscf. The second scenario shows
BTEX emission can be as high as 1238.21 ton/yr, and the corresponding moisture content is
2.41 lbm/MMscf. The constrained optimization problem, as shown in Equations (3)–(5),
(7), and (8), was solved. The SVR-based metamodels of the process were optimized using
the BONUS algorithm. BONUS was performed for 32 optimal points by changing the con-
straint to obtain the Pareto set. Process simulation was conducted in ProMax®; metamodel
generation, error estimation, and uncertainty quantification were performed in MATLAB®;
and BONUS was conducted in an inhouse optimization module in FORTRAN, installed in
a Windows® environment. In this process, we were able to compare SVR-BONUS-based
metamodeling and optimization performance.

Table 1. The maximum and minimum value of BTEX and Dry Gas water content as obtained from process simulation [1].

No.
Glycol

Circ. Rate
(sgpm)

Absorber
Pressure

(psig)

Inlet Glycol
Temp.

(Fahrenheit)

Flash Gas
Pressure

(psig)

Reboiler
Temp.

(Fahrenheit)

Stripping
Gas Rate
(MSCFD)

BTEX
Emission
(ton/yr)

Dry Gas
Water

(LBM/MMscf)

1. 1.01 563.80 124.69 51.93 389.11 5.96 65.58 13.89

2. 9.91 501.97 110.66 71.74 375.27 88.91 1238.21 2.41

The base distribution consisting of the distribution of the decision and uncertain
variables as used for optimization is shown in Table 2.

Table 2. Variables and their type of distributions as used in BONUS optimization.

Variable Name Variable Type Distribution Type Distribution Characteristics

TEG Circulation Rate (GPM) Decision variable Uniform ‘lower’, 1, ’upper’, 10

Absorber Pressure (psig) Decision variable Uniform ‘lower’, 500, ’upper’, 600

Reboiler Temp. (Fahrenheit) Decision variable Uniform ‘lower’, 360, ’upper’, 400

Stripping Gas flow rate
(Mscfd) Decision variable Uniform ‘lower’, 0.0, ’upper’, 100

errBTEX (%) Uncertain variable Normal Mean, 0
Standard deviation, 13.33

errDryG (%) Uncertain variable Uniform ‘lower’, −10, ’upper’, 10

3.1. Pareto Front Generation

Dehydration of natural gas is undertaken to prevent hydrate formation and/or liquid
water deposition in the pipelines and to avoid condensation in the compressors. Thus,
both the environmental objective of BTEX minimization and the reduction in the moisture
content as an economic objective must be considered. Using the ε− constrained method,
Pareto optimal points were generated to compare BTEX emissions with dry gas water
content. Results from the optimization are shown in Table 3.
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Table 3. Optimized process conditions for the 32 Pareto points.

Pareto
Points

Process Variables Results from ProMax®

Process Simulation

Glycol
Circ. Rate

Absorber
Pressure

Reboiler
Temp.

Stripping
Gas Rate

BTEX
Emission

Dry Gas
Water

sgpm psig Fahrenheit MSCFD ton/yr lbm/MMscf

A 9.90 490.00 390.00 99.90 1323.29 0.81

B 9.90 501.15 389.51 94.96 1295.49 0.83

C 9.66 497.25 389.63 97.32 1281.33 0.85

D 8.57 508.35 390.00 95.33 1142.04 1.04

E 8.05 498.25 390.00 99.90 1108.06 1.12

F 7.54 538.95 388.69 99.90 965.61 1.32

G 5.55 546.25 357.41 13.52 670.15 3.42

H 4.55 590.00 390.00 99.90 536.38 2.96

I 3.84 511.88 373.70 9.68 486.35 4.34

J 3.63 514.80 376.40 94.14 496.59 3.52

K 3.55 584.47 390.00 82.64 411.16 4.06

L 3.49 574.38 360.38 82.65 412.41 4.15

M 2.98 586.50 369.32 57.66 327.27 5.13

N 2.97 583.00 382.71 76.38 336.41 5.02

O 2.96 599.94 399.94 100.00 333.05 5.14

P 2.88 526.46 362.73 81.72 367.53 4.81

Q 2.52 524.47 381.06 60.71 307.26 5.55

R 2.32 532.91 390.00 99.78 290.02 6.05

S 2.21 515.33 372.52 28.71 251.86 6.53

T 2.14 499.53 390.00 99.79 281.15 6.28

U 2.03 599.69 376.68 42.04 195.22 7.83

V 2.00 551.36 376.65 81.87 228.04 7.26

W 2.00 587.63 383.45 83.62 214.04 7.66

X 2.00 570.06 359.51 99.41 227.40 7.47

Y 2.00 582.63 389.99 95.70 221.00 7.59

Z 2.00 580.67 390.00 99.27 223.24 7.57

AA 2.00 556.57 375.30 62.37 217.58 7.36

AB 2.00 544.40 354.41 14.54 199.01 7.96

AC 2.00 590.00 375.41 46.71 197.37 7.80

AD 1.79 600.00 376.34 37.69 164.76 8.82

AE 1.72 594.24 374.39 31.88 155.32 9.13

AF 1.31 545.47 394.27 80.35 139.12 10.46

Pareto point A was obtained by minimizing BTEX emission for maximum dryness,
i.e., minimum moisture content. Pareto points B to AF were obtained from BTEX emission
minimization while relaxing the constraint for dry gas water content from the minimum
value as obtained at Pareto point A. The constraint in dry gas water content was increased
in steps up to 10 lbm/MMscf. The optimized process conditions from A to AF listed in
Table 3 were also simulated in ProMax® process simulator. The results from the ProMax®
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process simulation at the optimal operating conditions are also shown in Table 3. Figure 9
shows the Pareto front generated with the process simulation and BONUS at the optimal
points. Natural gas must be dried to ensure a moisture content as high as seven pounds of
water per million standard cubic feet (LBM/MMscf) [37]. Suitable operating conditions as
obtained from the BONUS-based optimization, as shown in Table 3, are between I and T.
The optimal solution can be obtained at Q where both BTEX emission (307.26 ton/yr) and
dry gas water content (5.55 lbm/MMscf) are minimized.
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Figure 9. Pareto optimal points are predicted by SVR-BONUS optimization. Objective values at the optimal process
conditions are obtained from BONUS and ProMax® process simulation.

3.2. Value of Stochastic Solution (VSS)

In our previous work, we used the efficient ant colony optimization (EACO) algo-
rithm for an SVR-EACO optimization of natural gas processing units [1]. In EACO-based
optimization, the error associated with the SVR model is not considered. The average
value of the uncertain variables BTEX emission and dry gas water content as obtained
from the SVR model is used for optimization. In the present work, we used probabilistic
information of the uncertain variables to measure the Value of the Stochastic Solution (VSS).
The difference between taking the average value of the uncertain variable for optimiza-
tion as used in SVR-EACO when compared with stochastic analysis, i.e., propagating the
uncertainties through the model as used in SVR-BONUS, is defined as the Value of the
Stochastic Solution, VSS. The Pareto optimal points as predicted by SVR-BONUS and SVR-
EACO optimization are shown in Figure 10. Values at the optimal process conditions are
obtained from ProMax® process simulation at the optimal conditions as predicted by the
two methods. To estimate the VSS, we compared the objective BTEX emission at different
dry gas water content values as obtained from optimal process conditions suggested by
SVR-EACO, with that from SVR-BONUS optimization using ProMax® process simulation
at those optimal process conditions.
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Figure 10. Pareto optimal points as predicted by SVR-BONUS and SVR-EACO optimization. Values at the optimal process
conditions are obtained from ProMax® process simulation.

To compare the emission at a given dry gas water level from SVR-EACO and SVR-
BONUS optimization, extrapolation was undertaken of the results as obtained from SVR-
BONUS. The VSS for this problem is shown in Figure 11. The results reflect emission
savings up to 405.25 tons per year.

Energies 2021, 14, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure 10. Pareto optimal points as predicted by SVR-BONUS and SVR-EACO optimization. Values at the optimal process 

conditions are obtained from ProMax®  process simulation. 

To compare the emission at a given dry gas water level from SVR-EACO and SVR-

BONUS optimization, extrapolation was undertaken of the results as obtained from SVR-

BONUS. The VSS for this problem is shown in Figure 11. The results reflect emission sav-

ings up to 405.25 tons per year. 

 

Figure 11. Value of Stochastic Solution (VSS) as obtained from the difference of deterministic optimization solution and 

stochastic optimization solution. 

  

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12

B
TE

X
 e

m
is

so
n

s 
(t

o
n

/y
r)

Dry gas water content (lbm/MMscf)

SVR-BONUS

SVR-EACO

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10

V
al

u
e

 o
f 

St
o

ch
as

ti
c 

So
lu

ti
o

n
 (

V
SS

) 
(t

o
n

/y
r)

Dry Gas water content (lbm/MMscf )

Figure 11. Value of Stochastic Solution (VSS) as obtained from the difference of deterministic optimization solution and
stochastic optimization solution.
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4. Discussion

From the Pareto front, as shown in Figures 9 and 10, it can be found that the dry gas
moisture content decreases at the cost of increased BTEX emission. From the 500 simulated
scenarios, BTEX emission was found to be as high as 1238.21 ton/yr, and that of dry
gas water content was 13.89 lbm/MMscf, shown in Table 1. Comparing the maximum
values with that from the Pareto optimal point Q reveals that optimal operating conditions
reduced the BTEX emission and dry gas water content by 75.19% and 60.04%, respectively,
from the highest possible value.

Break et al. [27] considered glycol circulation rate, stripping gas flow rate, flash tank
pressure, and reboiler temperature to optimize the dehydration process. Simulating the
present process with 100 MMSCFD at the optimal conditions found by Break et al. [27]
resulted in an emission of 585.06 ton/yr and a dry gas water content of 3.89 lbm/MMscf.
Compared to the optimal solution obtained at Pareto point Q, we find BTEX emission
as low as 307.26 ton/yr, resulting in a significant reduction in emission, by 47.5%, while
keeping the dry gas water content within the permissible limit. Because BTEX emission
depends on the process throughput and natural gas composition, it is imperative to obtain
the optimal values of the process variables that mitigate emission.

The Pareto points from I to T, as shown in Table 3 are found to be in accordance with
dry gas water content limits between 4 to 7 lbm/MMscf, as recommended, while keeping a
moderate BTEX emission. Through the process of stochastic optimization, we obtained the
range of process variables at which Pareto optimal solutions for BTEX emission mitigation
are feasible. BONUS optimizes by propagating the uncertainty through the model, and
identified optimal process conditions that mitigate BTEX emission up to 405.25 ton/yr
compared to that from deterministic optimization.

5. Conclusions

A hybrid algorithm was applied in this work that incorporates support vector regres-
sion with the BONUS algorithm for the modeling and optimization of the TEG dehydration
process. Support vector regression is a machine learning technique for nonlinear regres-
sion. Using SVR, two different process models were developed. One correlates process
variables with BTEX emission, and the other correlates dry gas water content with the
same. We quantified modeling uncertainties due to machine learning and carried out the
multi-objective stochastic optimization problem using BONUS, so that the BTEX emission
was minimized with a constraint on the maximum water content in the processed gas.
The ε-constraint method is used to obtain a Pareto optimal solution. The algorithm that
involves SVR and BONUS is a novel method used for process optimization that considers
uncertainty associated with the metamodel. The superior performance of the BONUS
algorithm at low water content limits is attributed to the metamodel generated using
limited data with low dry gas water content for the SVR model development, and the
general model uncertainties associated with the machine learning model. To the best of our
knowledge, this is the first time machine learning model uncertainties have been included
in optimization to determine realistic Pareto solutions to a problem.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/en14196177/s1, Table S1: ProMax®simulated and Machine learning model generated BTEX
emission and dry gas water content data at random realizations of the natural gas dehydration
processing unit.
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