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Abstract: Renewable energy use can mitigate the effects of climate change. Solar energy is amongst
the cleanest and most readily available renewable energy sources. However, issues of cost and
uncertainty associated with solar energy need to be addressed to make it a major source of energy.
These uncertainties are different for different locations. In this work, we considered four different
locations in the United States of America (Northeast, Northwest, Southeast, Southwest). The weather
and cost uncertainties of these locations are included in the formulation, making the problem an
optimization-under-uncertainty problem. We used the novel Better Optimization of Nonlinear
Uncertain Systems (BONUS) algorithm to solve these problems. The performance and economic
models provided by the System Advisory Model (SAM) system from NREL were used for this
optimization. Since this is a black-box model, this adds difficulty for optimization and optimization
under uncertainty. The objective function and constraints in stochastic optimization (stochastic
programming) problems are probabilistic functionals. The generalized treatment of such problems is
to use a two-loop computationally intensive procedure, with an inner loop representing probabilistic
or stochastic models or scenarios instead of the deterministic model, inside the optimization
loop. BONUS circumvents the inner sampling loop, thereby reducing the computational intensity
significantly. BONUS can be used for black-box models. The results show that, using the BONUS
algorithm, we get 41%–47% of savings on the expected value of the Levelized Cost of Electricity
(LCOE) for Parabolic Trough Solar Power Plants. The expected LCOE in New York is 57.42%,
in Jacksonville is 38.52%, and in San Diego is 17.57% more than in Las Vegas. This difference is due to
the differences in weather and weather uncertainties at these locations.

Keywords: solar energy; BONUS algorithm; weather uncertainties; stochastic optimization

1. Introduction

The energy crisis and climate change are two different terms but are closely related. The need
for energy is rising by the day due to the increase in demand in developing countries like India and
China. At the same time, the effects of using fossil fuels for producing energy are increasingly evident.
The global average temperature has increased by 0.76 ◦C (0.57 ◦C to 0.95 ◦C) between 1850 to 1899
and 2001 to 2005, and the warming trend has increased significantly over the last 50 years. Sea levels
are rising at an alarming rate, and deserts are expanding in the subtropics. These are just some of the
glaringly obvious consequences of this increase in greenhouse gas emissions over the years. The main
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contributors to this increase are fossil fuels. The solution to this is using alternative, less harmful,
and sustainable energy sources.

The use of renewable energy sources has been on the rise in the last decade. Although efforts
are being made to increase the use of these sources, renewable energy still accounted for only 11% of
total energy generation in the United States in 2017, and solar power accounts for less than 1.3% of the
electricity generated. This small percentage of solar power in the energy mix is due to the cost of solar
power plants and their performance in the face of weather uncertainties. This paper tries to address
the problem of minimizing the cost of electricity by solar power in the face of uncertainties.

1.1. Solar Technologies

There are two primary solar energy technologies. These are photovoltaics (PV) and concentrating
solar power (CSP). PV directly converts light into electricity. CSP utilizes heat from the Sun (thermal
energy) to drive utility-scale electric turbines. CSP systems are widely used for large-scale power
generation and are the focus of current work. CSP technologies are the parabolic trough, linear Fresnel
reflector, power tower, and dish/engine systems. In this work, we consider parabolic trough technology,
which is traditionally employed in a large-scale power plant. In concentrating solar power systems,
direct normal solar radiation is collected and converted to thermal energy that generates electricity by
running a power block. In a parabolic trough system, trough-shaped solar field collectors are used to
collect heat from the Sun. Each collector uses mirrors and receivers with supporting structures that can
withstand winds. Each receiver consists of a metal tube coated selectively black with low emissivity
and a vacuum around the tube inside a tubular glass. The heat is transported from the solar field by a
heat transfer fluid (HTF) using a heat exchanger to the power block (also called power cycle) and other
components of the system. The power block consists of a turbine that converts heat energy to electric
energy. When there is insufficient solar energy to reach the rated capacity, the optional fossil-fuel
backup system delivers supplemental heat to the HTF.

1.2. Role of Optimization and Uncertainties in Solar Power Systems

The abundance of solar radiation, its renewable nature, its scalability, its ease of application,
and the recent boost towards green energy make solar thermal power plants an enticing opportunity
for business owners. Solar power plants convert high-temperature high-energy solar radiation into
thermal energy using concentrating systems. Direct normal irradiance is a metric characterizing the
annual sum of direct solar radiation for a specific location. The best location for setting up a CSP plant
is usually one with higher direct normal irradiance, typically arid desert areas or semi-arid areas [1].
However, it is useful to have a local solar power plant.

The comparative difference between non-renewable energy sources and solar thermal energy of
considerably lower wattage has a higher cost of electricity. Optimization thus provides a window to
increase efficiency and reduce the cost of electricity. Traditionally, solar thermal power plants occupy a
larger area of land to increase the incident solar radiation for better energy generation. Other factors,
such as the cost of equipment, maintenance costs, labor, and equivalent electricity production pose a
roadblock for this technology.

A feasibility study carried out by Poullikkas et al. (2010) in the Mediterranean region found that
size and capital cost are critical factors affecting the economic viability of solar power plants in the
presence of feed-in incentives. [2] In a separate study, Poullikkas et al. tried to optimize technical and
economic aspects of a parabolic CSP plant with a single parabolic trough without thermal storage
options. They observed that CSP plants of 50 MWe capacity with thermal storage provided lower
system electric unit cost in comparison to CSP plants with 100 MWe or larger capacity without thermal
storage options [3].

Solar multiple is the unit used to express the solar field area against the power cycle capacity
and is generally used to optimize the field area for a given power cycle capacity and/or site location.
Montes et al. used solar multiple as a performance indicator for a parabolic trough solar power plant
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with direct steam generation coupled with thermal storage and observed that solar multiple directly
affected the levelized cost of electricity and a high solar multiple reduced the annual fossil fuel
consumption [4].

In a subsequent study, Montes et al. optimized the solar multiple for a solar-only power
plant of 50 MWe capacity without any hybridization or thermal storage capabilities. For their case,
they considered five parabolic-trough-type plants with varying field sizes while other input parameters
remain constant and calculated the solar multiple for the minimum levelized cost of electricity (LCOE)
for each plant. Their results show that the optimum solar multiple is also dependent on design point
conditions, power block parameters, and power cycle apart from the site location and solar field
size. This study concludes that solar field size plays a big role in optimizing electricity generation,
that lowering the cost of electricity for a larger-than-optimum field results in increased cost through
energy loss, and that a smaller field serves just a part-load power block condition [5].

Desai et al. analyzed the effect of design parameters such as turbine inlet pressure and temperature,
design radiation, size of the plant, and changes in the Rankine cycle on the levelized cost of electricity
as well as the thermo-economic analysis of CSP plants. Their results indicate that an increase in the
inlet temperature and plant size and a modified Rankine cycle decrease the levelized cost of electricity
while improving the overall operational efficiency of the plant [6].

A solar thermal power plant converts incident solar energy into thermal energy and for electricity
generation. Conventional parabolic trough types of solar thermal power plants used synthetic oil as a
heat transfer fluid for transferring thermal energy to the Rankine cycle turbine. Odeh et al. evaluated a
direct steam generation solar collector for its thermal performance in a parabolic trough solar plant
and showed that the thermal losses were lesser than those in a synthetic-oil-type CSP [7]. Post et al.
tried to optimize the heat-to-energy conversion methods using thermionic generation technology,
which directly converts heat to electricity at high temperatures by applying solid-state conversion
techniques. Their results suggest that thermionics shows good scope as a high-temperature topping
cycle application in a CSP plant but currently needs more research to be used in power generation [8].

Another study by Bishoyi et al. simulated a CSP plant to evaluate the design and thermal
characteristics of a 100-MW plant with 6 h thermal storage capacity based in Udaipur, India. HITEC solar
salt is used as the HTF due to its high heat-carrying capacity, and their results verify the design to
show good thermal performance [9]. Molten salt as an HTF in a parabolic-trough-type plant can be
used to reduce the LCOE, as shown by Ruegamer et al. The use of molten salts as HTFs, combined
with enhanced collector technology and higher power block efficiencies, show that the LCOE can be
reduced greatly [10]. A study carried out by Lenert et al. optimized the solar radiation receivers by
using nanoparticles with Therminol VP-1 as the HTF to improve solar–thermal energy conversion and
reduce energy losses [11].

Sioshansi and Denholm analyzed the effect of thermal energy storage on the value of CSP plants
through an increase in the utilization of thermal energy from the solar field. However, this is highly
dependent on the plant location due to the capital costs associated with it [12]. [Most solar thermal
power plants in the recent past have thermal storage to increase electricity generation and the plant
capacity. Avila Marin et al. tried to find the best combination of thermal storage and turbine power
to further reduce the levelized cost of electricity. The same study also compared the technology by
comparing plants that used direct steam generation (DSG) and molten nitrate salts (MNS) without
thermal storage capabilities and suggested areas for development of components by a cost analysis of
the same plants for large-scale electricity generation. Their results show that the combination of MNS
technology with high thermal storage capacity resulted in a low turbine power capacity, while DSG
technology coupled with low thermal storage capacity could produce high values for turbine power.
Separately, without any thermal storage, DSG was more promising than MNS to optimize the levelized
cost of electricity [13].

Commercialization of CSP-type power plants faces problems in providing an economically feasible
alternative to traditional power plants, and one way of tackling this issue is by optimizing the power
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block for better efficiency. Mittelman et al. suggested a modified power block, adding a bottoming
Kalina cycle combined with a back-pressure turbine using ammonia water as a working fluid for a
50-MW power plant, and the modified power block showed a reduction in the cost of electricity [14].
Sait et al. suggested structural design changes in the power block, including linear Fresnel collectors
and multi-pass heat exchangers to reduce the cost of CSP [15].

Linear-Fresnel-type solar power plants are another type of solar power plant which uses
concentrated energy and transfers this energy to a heat transfer fluid for subsequent electricity
generation. Linear Fresnel reflectors with direct steam generation options are a cheaper alternative to
parabolic trough systems CSP but they have certain drawbacks, such as saturated steam, which require
such plants to have higher aperture area requirements. Desai et al. try to integrate both the systems to
propose a composite solar thermal plant to suggest an optimal functioning solar thermal plant with a
reduction in cost in comparison to both CSP- and LFR-type plants [16].

In research conducted by Boukelia et al., optimization of a parabolic trough solar thermal power
plant was carried out based on an artificial neural network algorithm. Their research is based on
optimizing five parameters: design parameters such as ambient temperature, direct solar radiation,
row spacing between parallel collectors, the number of storage hours (TES capacity), and the solar
multiple. These parameters affect the physical behavior of the CSP type plant greatly. By finding
an optimized combination of all these input parameters using the ANN algorithm, they were able
to minimize the LCOE and suggested an optimum system design [17]. Cabello et al. tried a similar
approach using a genetic algorithm for optimization of annual profit from a parabolic trough solar
plant by setting input parameters as the collector surface, thermal storage size and auxiliary system
power capacity [18].

A recent review of the economic assessment of CSPs [19] presents several articles and identifies
two dominant methodologies for the calculation of LCOE. It argues that, while a small subset of studies
considered the time-varying meteorological and electricity market, it is an important factor and should
not be neglected in policymaking.

Although uncertainty is inherent in solar power systems, only recently it has received some
attention in the literature. Munoz et al. [20] studied the effect of uncertainties in solar radiation and
thermal demand on the reliability of solar thermal systems. Jain et al. [21] explored the feasibility of
developing a 100-MW solar thermal power plant with different degrees of thermal energy storage at
Jodhpur, Rajasthan, India. The feasibility was assessed considering different scenarios of varying solar
multiples and thermal energy storage. It has been concluded that uncertainties significantly affect the
cost of electricity. Meybodi and Beath [22] considered effects of weather as well as cost uncertainties on
various solar thermal plants in Australia. They found that the LCOE is highly dependent on the size as
well as the site location of the plant. Hanel and Escober [23] studied effects of uncertainties in solar
energy resource assessment on the cost of energy in Chile. The methodology for stochastic modeling to
incorporate uncertainty in solar thermal power plant evaluations is presented by a study from Sandia
National Laboratories [24]. Scheduling, planning, and bidding strategy in the face of uncertainties is
the focus of [25–29].

From the literature survey presented in this section, it is obvious that, currently, there is no
study that presents the optimization of a solar thermal power plant in the face of weather and cost
uncertainties. This is the focus of the current endeavor.

1.3. Motivation and Problem Formulation

None of the optimization studies in the present literature considered uncertainties in weather
and/or cost, which is inherent in solar thermal systems. The motivation behind this paper was to
carry out multivariable optimization of a solar power system in the face of uncertainties. In this
work, we used a new algorithmic framework based on the Better Optimization of Uncertain Systems
(BONUS) algorithm proposed by Sahin and Diwekar [30] and the System Advisor Model (SAM) [31]
simulation software developed by the National Renewable Energy Laboratory (NREL). We reduced
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the expected value of the levelized cost of energy under power constraints in parabolic trough solar
power plants in the face of uncertainties.

We use SAM to simulate the technical and financial parameters of the power plant, which helped
us in identifying the decision variables and uncertain variables involved in our problem. We then
used the BONUS algorithm framework to optimize these decision variables, including uncertainties in
weather and cost, to get our lowest-cost objective function. We selected four different locations with
different weather conditions for the parabolic trough plant to be situated at.

2. The System Advisory Model and Problem Definition

The System Advisor Model (SAM) [31] is a simulation model developed at NREL with help from
Sandia National Laboratories, the University of Wisconsin, and other organizations. SAM includes
performance and cost models that can simulate grid-connected power projects based on different types
of renewable sources of energy. This is a highly useful tool for people working in the renewable energy
sector. SAM uses information about technical parameters, like the type of equipment, the design
of the equipment, and the configuration of the system, as inputs to make performance predictions,
which then enable it to make cost-of-energy estimates using financial variables such as installation costs,
labor costs, operation and maintenance costs. The performance models can run hourly simulations to
calculate the power system’s electrical output. Yearly electricity output and the cost of electricity are
then calculated from this hourly output. The different renewable energy sources that SAM can handle
include photovoltaic systems, concentrating solar power systems, solar water heating, wind power,
geothermal, and biomass power. The financial models in SAM can either represent a residential or
commercial project that can buy and sell electricity from and to the grid or power purchase agreement.

SAM uses weather data; location information, such as the area coordinates, wind speed, average
temperature, and elevation above sea level, is stored in weather files. The weather data elements differ
for each performance model. For example, for solar technologies, the weather file consists of data
elements, such as global horizontal, direct normal and diffuse horizontal irradiance, used to calculate
incident irradiance. It should be noted that there are measurement and model uncertainties with this
parameter, as indicated in recent literature [32,33]. Meanwhile, the wind power performance model
requires wind speed and temperature data at three different heights above the ground along with wind
direction and atmospheric pressure data.

SAM’s solar resource library for weather data includes NREL’s National Solar Resource Database,
Solar and Wind Energy Resource Assessment Program, ASHRAE International Weather for Energy
Calculations, version 1.1, and Canadian Weather for Energy Calculations.

In this work, we used one-year data for four different regions in the USA. Thus, seasonal
uncertainties are included in the problem.

3. Problem Definition and Decision Variables

The problem at hand is to minimize the expected value of the levelized cost of electricity subject
to the capacity (power plant size) constraint.

Minimize E(CE (x, u)) (1)

Subject to Ca(x, u) = 100 (2)

SAM model equations S(x, u) = 0 (3)

Here, E denotes the expected value and P is the probability of satisfying the constraint. CE denotes
the LCOE of electricity and Ca the capacity of the power plant. We considered the capacity of the
power plant to be 100 MW. Equation (3) represents all the black-box model equations of SAM. All these
quantities are functions of the decision variables, x, and the uncertainties in weather and cost are
denoted by variables, u.
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The parameters for the parabolic trough physical model in SAM are divided for different sections
of the plant, like the solar field, collectors, receivers, power cycle, thermal storage, and parasitic.
We targeted the solar field parameters for choosing the decision variables for our problem. To determine
the decision variables from all the solar field parameters, we performed a sensitivity analysis to see the
effect of these parameters on the annual energy calculated by the model. The most sensitive parameters
were selected for optimization. These parameters are given below.

• Solar multiple: The solar field aperture area required to generate the thermal energy needed to
achieve the rated capacity. Thermal and optical losses are included in the capacity.

• Row spacing: The distance between rows of collectors in meters when the rows are placed
uniformly throughout the solar field.

• Stow angle: The hour of stow collector angle. Northern latitude represents a zero stow angle and
is vertical facing east, and a 90 degree angle is vertical facing west.

• Freeze protection temperature: This is the minimum temperature of the heat transfer fluid at
which the freeze protection equipment is activated.

• Irradiation at design: The design point direct normal radiation value. The aperture area required
to drive the power cycle at its design capacity and the design mass flowrate of the heat transfer
fluid is calculated based using the value of irradiation

• Collector tilt: This is the angle from horizontal of all collectors in the field. It is assumed that all
collectors are fixed at this angle. Closest to the equator, a positive value tilts the end of the array
up; at the southern end, a negative value tilts it down.

Apart from weather uncertainties included in the weather data file, we considered uncertainties
in the following cost parameters.

3.1. Direct Capital Costs

• Site Improvements ($/m2)—This is the cost in dollars per meter square, which includes expenses
related to site preparation and other equipment that are not included in the solar field cost category.

• Solar Field ($/m2)—This is the cost of solar field area in dollars per meter square, which includes
expenses related to the installation of the solar field, labor, and equipment.

• HTF System ($/m2)—These are the expenses related to the installation of the heat transfer fluid
pumps and piping, labor, and equipment expressed in dollars per square meter of the solar
field area.

• Storage ($/kWht)—Storage capacity cost dollars per thermal megawatt hour, which includes
expenses related to the installation of the thermal storage system, equipment, and labor.

• Power Plant ($/kWe)—Cost of power block gross capacity. This includes the installation of the
power block, equipment, and labor.

3.2. Indirect Capital Costs

• EPC and Owner Costs—Costs associated with design and construction. Costs of land tax and
insurance rates consider federal and state income tax rates, sales tax, insurance rate, inflation rate,
and real discount rate.

4. The BONUS Algorithm

In optimization, the values of decision variables are determined by optimizing the objective
function and satisfying the constraints. The presence of uncertainties converts the optimization problem
into a stochastic optimization problem. There is a probabilistic objective function as the expected
value or variance in a stochastic optimization problem. The constraints can also be probabilistic.
A generalized stochastic optimization problem [34] can then be represented as:

Optimize P1(Z(x, u)) (4)
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subject to P2(h(x, u)) = 0 (5)

P3(g(x, u) ≥ 0) (6)

where P is some form of function-derived cumulative distribution functional and u is the uncertain
variable expressed in terms of probability distributions. x denotes decision variables. In our problem,
the objective function is the expected value in the face of the capacity constraint.

Stochastic optimization problems can be categorized as stochastic linear programming, stochastic
nonlinear programming, and stochastic mixed-integer linear and nonlinear programming problems.
Our problem involves continuous decisions and nonlinear functions and hence is a stochastic nonlinear
programming problem.

Figure 1 represents the general calculation sequence for these problems [35]. The inner loop finds
a probabilistic representation of the objective function and constraints using the sampling loop or
scenario loop. The outer optimization loop determines the decision variables. For these decision
variables at each iteration, a sample set or scenario set of uncertain variables is generated, the model
is run for each of these sample (scenario) points, and the value of the probabilistic objective and
constraints are calculated. For nonlinear programming problems, the derivative information is also
needed, which is again calculated by perturbation of each decision variable using the sampling loop or
scenario loop for each perturbation.
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The two fundamental approaches used to solve Stochastic Nonlinear Programming (SNLP)
problems include techniques that identify problem-specific structures and transform the problem
into a deterministic NLP problem and problems that use decomposition techniques. For instance,
chance-constrained programming [36] replaces the constraints that include uncertainty with the
appropriate probabilities expressed in terms of moments, thereby transforming the problem into a
deterministic optimization problem that comes under the first category. For example, the stochastic unit
commitment problem in the power industry is often handled as a chance-constrained programming
problem [37]. However, there are major restrictions in applying the chance-constrained formulation;
for instance, the technique is only applicable to stable distribution functions, the uncertain variables
should appear in the linear terms in the chance constraint, and, further, the problem needs to satisfy
the general convexity conditions. Constraint correlations can create problems for chance-constrained
programming. The chance-constrained information decision gap method is another way of handling
uncertainty [38]. Robust optimization [39] techniques consider the worst-case scenario and also
require a transformation of the problem. However, these methods are difficult to apply to black-box
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systems like the one we have here. Decomposition techniques, like L-shaped decomposition [40],
use stages to divide the problem. These involve master problems and subproblems. The subproblems
generate bounds on the objective function for the master problem by changing decision variables, and s
determines the recourse action with respect to the uncertain variables. However, these methods also
require convexity conditions and/or dual-block angular structures and are only applicable to discrete
probability distributions (for example, Lagrangian-based approaches and regularized decomposition
technique [41] and the progressive hedging algorithm [42] used for SNLPs). These methods have
limitations in terms of handling uncertain variables as the number of scenarios considered tend to be
small. An alternative approach that can be used to capture uncertainty is through a sampling loop that
is run for every optimization iteration for the decision variables, as shown in Figure 1. Examples of this
approach include stochastic approximation methods like Dantzig’s method of importance sampling [43]
and the stochastic decomposition method proposed by Higel and Sen [44]. These methods generate
upper and lower bounds for the approximation of the stochastic function. This is a computationally
expensive procedure making these methods ineffective for even moderately complex models. The Better
Optimization of Nonlinear Uncertain System (BONUS) algorithm was proposed by Sahin and Diwekar
in 2004 [30] to circumvent this problem. In BONUS, the inner sampling loop with sample model
runs (Figure 1) is only used for the first iteration. In this first iteration, the decision variables are
assumed to have uniform distributions (between upper and lower bounds). Specified probability
distributions of uncertain variables, together with the uniform distribution of decision variables,
form the base distributions for analysis. The solution space of the objective function and constraints is
obtained by sampling only at the base distribution at the beginning of the analysis. As the optimization
proceeds, the decision variables change, and the underlying distributions for the objective function
and constraints transform. A reweighing scheme is used based on the ratios of the probabilities for
the current and the base distributions to find the values of the objective function and constraints.
To obtain a smooth function for the probabilities, we approximate the distributions using kernel density
estimation techniques. For details, please refer to Sahin and Diwekar [30] and Diwekar and David [34]
Thus, there are no sampling loop and model evaluations for each optimization iteration in BONUS.
Even the derivative information is calculated using reweighing. We use the efficient Hammersley
sequence sampling (HSS) [45,46] for the base distributions to increase the computational efficiency
further. The algorithm we have developed is essentially a sequential quadratic programming (SQP)
algorithm that replaces the sampling loop and uses a reweighting scheme to estimate the objective
function and gradient at each iteration. The Hessian is approximated by using a BFGS formula.

The general procedure involves the following steps. Since we need an expected value for
objective function and constraint for this problem, the procedure is described in terms of expected
value calculations.

1. Off-line Computations: Draw independently distributed samples j = 1, Nsamp for uncertain
variables u and decision variables x. The distributions for the decision variables are assumed to be
uniform distributions between the upper and lower bounds of the decision variables. Use these
samples to generate the design prior density function Pp(x, u) using Kernel Density Estimation
(KDE). Evaluate the objective function Z (and the probabilistic constraint) for each sample.

2. On-line Computations:

a. At each iteration, k, the decision variables xk (in the first iteration, the initial value of the
decision variables is given) define a narrow normal distribution around this point and
draw samples of xk from it. Use samples to generate the design distribution Pd(x, u) using
KDE. Estimate the objective function and constraint (expected value E) using the following
reweighting formula.

V
(
xk

)
= E(Z(x, u)) =

Nsamp∑
j=1

ωk
jZ

(
xk, u

)
(7)
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where

ωk
j =

Pd
(
xk

j , u
)
/Pp

(
xk

j , u
)

∑Nsamp
jj=1 Pd

(
xk

j j, u
)
/Pp

(
xk

j j, u
)

and satisfy
∑Nsamp

j=1 ωk
j = 1.

b. Perturb the decision variable xk and use the reweighting scheme to estimate (xk + δ xk).
Find the gradient and KKT conditions. If KKT conditions are satisfied, terminate and go to
step 2c.

c. SQP-based NLP: The Hessian approximation Hk is calculated using a gradient using BFGS
formula. Compute step ∆x for decision variables by solving a quadratic program (QP):

min
∆x
∇V(xk)

T
∆x + ∆x THk

·∆x (8)

s.t. xk + ∆x (9)

d. Decrease the step if necessary to obtain a new iterate xk+1 = xk + α∆x with α ∈ (0, 1).
e. Go to step 2a.

5. Results and Discussions

For using BONUS, the first step is to generate a base sample set. We identified the six decision
variables (Table 1) and 13 uncertain variables (Table 2) using SAM’s physical parabolic trough model
in the previous section. Overall, 2000 samples of these 19 variables are generated using HSS. Decision
variables are assigned a uniform distribution with their upper and lower bounds specified. Normal
distributions are assigned to the uncertain variables.

Table 1. Decision variables and their bounds.

Parameter Lower Bound Upper Bound

Collector Tilt 0 7
Freeze Protection Temp. 140 180

Irradiation at Design 800 1000
Row Spacing 10 20

Solar Multiple 1 3
Stow Angle 150 180

Table 2. Uncertain variables with mean, std. dev. and bounds.

Parameter Mean (µ) Std. dev. (σ) Lower Value (µ − 3σ) Upper Value (µ + 3σ)

HTF System Cost per meter square 60 1.65 54 66
Land Cost per acre 10,000 330 9000 11,000

Power plant cost per Kwe 1200 29.04 1080 1320
Site Improvement cost per meter square 40 0.66 36 44

Solar field cost per meter square 450 11.55 405 495
Storage system cost per kWht 75 2.31 67.5 82.5

EPC Costs % direct 11 0.495 9.9 12.1
Inflation Rate 1 0.0825 0.9 1.1

Real Discount Rate 2 0.1815 1.8 2.2
Federal income tax rate 28 0.924 25.228 30.772

Insurance rate 0.5 0.0165 0.4505 0.5495
Sales Tax 5 0.165 4.505 5.495

State Income Tax 5 0.231 4.5 5.5

After 2000 sample runs of SAM, we collected the output information, which defines the objective
function and the constraint. BONUS is then used to find optimal solutions for all four different locations.
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It has been found that the four stochastic nonlinear problems are non-convex. To avoid getting
trapped in local solutions, we provided ten different initial values for the algorithm. These different
initial values needed different iterations to get to the optimum. The version of BONUS developed in
our group uses Successive Quadratic Programming (SQP) for derivative-based nonlinear optimization.
Therefore, the iteration summary for each SQP run is plotted. Since this is an NLP problem, we used
Karush–Kuhn–Tucker (KKT) error for the stopping criteria. The tolerance for KKT error is set to 0.001%
of the objective function value. Figures 2–5 show the optimization iteration summary. The best value
from all the iterations is reported in Table 3.
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Table 3. Optimal values and cost savings for different locations with consideration of uncertainties.

Decision Variables San Diego
(Base Case)

Las Vegas
(Optimal)

San Diego
(Optimal)

Jacksonville
(Optimal)

New York
(Optimal)

Collector Tilt 0 0.97883 0.91945 1.0382 0.77559
Freeze Protection Temp 150 145 164.09 165 168.49

Irradiation @ Design 950 830 829.94 830 840.08
Row Spacing 15 17.001 17.63 16.818 15.886

Solar Multiple 2 2.2341 2.3632 2.3841 3
Stow Angle 170 162 162.58 162.01 161.9

Base Value, Deterministic,
LCOE 16.91 21.18 29.98 43.22

Base case E(LCOE) 16.91 21.144 29.97 43.21
Optimal E(LCOE) 9.947 12.19 15.69 23.1

BONUS Optimal E(LCOE) 9.155 11.106 14.89 21.5
% savings 41.17682 42.34771 47.64765 46.54015

% difference bonus & actual 7.9622 8.892535 5.098789 6.926407
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Since BONUS uses reweighting for approximating the value of the objective function, we carried
out a full-scale stochastic simulation with 2000 samples at the optimal values to find the exact E(LCOE).
The optimal values of the decision variables for different locations and their cost savings are shown in
Table 3. We also carried out deterministic optimization, and the results are shown in Table 4.

Table 4. Deterministic optimization results.

Decision Variables/Optimal Cost Las Vegas San Diego Jacksonville New York

Collector tilt (deg) 0.2694 0.2694 3.995 5.6287
Freeze protection temp (◦C) 154.707 154.707 170.82 157.266
Irradiation at design (W/m2) 815.181 815.181 826.246 942.112

Row spacing (m) 19.8304 19.8304 18.8608 12.752
Solar multiple 2.8909 2.8909 1.1441 2.7076

Stow angle (deg) 177.428 177.428 3.995 157.618
Avg. LCOE (cents/kWh) 11.395 13.65 21.288 29.433

Value of Stochastic Solution(cents/kWh) 1.448 2.544 5.538 6.333

As can be seen, the table reaches different optimal values for each of the four locations. The decision
variable values are also different for each location due to the weather conditions. The optimal decision
variable values are different for deterministic optimization and stochastic optimization. This can be
attributed to the cost and weather uncertainties. The value of the stochastic solution is the difference
between the stochastic optimal cost obtained using stochastic optimization and the stochastic cost
at the deterministic optimum. It has been found that the value of the stochastic solution is highest
for New York. Given that New York weather changes considerably over different seasons, this is an
expected result. Table 3 shows that the optimal solution with respect to the expected value of LCOE
is 41 to 47.7% better than the base case. Las Vegas has the lowest cost; the expected LCOE in New
York is 57.42%, in Jacksonville is 38.52% and in San Diego is 17.57% more than in Las Vegas. It has
been found that, although BONUS captures the trends and hence the correct optimal values of the
decision variables, it underestimates the objective function by 5 to 8.9%. This can be easily corrected
by undertaking a stochastic simulation at the end of the final run, as we have done here. However,
with BONUS, we save on computational time significantly, as shown below.

5.1. Computational Savings

We can compute the reduction in computational time using the following formula (here, we
assume that one SAM run is approximately the same):

Reduction in computational time =
Difference in no. of SAM runs required

Original no. of SAM runs r
× 100 (10)

The total number of iterations required for optimizing the plant is 68. Since there are six
decision variables and 500 sample points, the original number of SAM runs required would be
(6 + 1) × 500 × 68 = 238,000. We simulated 2000 calculations using SAM. Hence, the difference in the
number of iterations is 238,000 − 2000 = 236,000. Therefore, the reduction in computational time is

Reduction in computational time =
236, 000
238, 000

× 100 = 99.15966% (11)

5.2. Effect of Individual Decision Variables

We have investigated the effect of each variable on the objective function. Here, we only considered
the deterministic objective function. For this, we use five different values of each decision variable
and the rest remain constant. We run our simulations in SAM and plot the graphs of each decision
variable, which are shown in Figures 6–8. The actual optimal value found is shown with a red dot.
As can be seen, the optimal value is lower than the trends. This is because we are carrying out a
multivariable optimization instead of a single-variable optimization. Further, uncertainties are also
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affecting the optimal value, as can be seen from Table 3. The deterministic base case value is higher
than the stochastic (E(LCOE)) value.Energies 2020, 13, x FOR PEER REVIEW 2 of 18 
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The stochastic simulation results for the base case, deterministic optimal values, and stochastic
optimal values are plotted in Figures 9 and 10. We can see that the base case, deterministic optimal,
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and stochastic optimal case CDFs do not cross each other, showing that the stochastic optimal case is
also a robust design in the face of uncertainties.Energies 2020, 13, x FOR PEER REVIEW 3 of 18 
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6. Summary and Future Work

This work presents, for the first time, multi-variable optimization of a parabolic trough power
plant in the face of uncertainties. SAM was used to model the performance and cost of the power
plant. Sensitivity analysis was used to determine which decision variables to use for optimization.
The BONUS algorithm provided optimal solutions for the 100-megawatt solar power plants under
weather and cost uncertainties for four locations. BONUS is shown to be 98 to 99% more efficient than
traditional stochastic nonlinear programming frameworks.

The US Energy Information Administration (EIA [47,48]) has predicted the levelized cost of
energy for different energy sources in 2020 [43]. The estimated LCOE for solar thermal technology in
2020 is 23.97 cents/kWh, and for advanced coal technology it is 11.57 cents/kWh. The recent energy
outlook [42] does not provide the cost of CSPs but provides estimates of energy cost. The energy cost is
predicted to decrease because of natural gas projections. By 2050, prices will range from 9.7 cents/kWh
to 11.6 cents/kWh across high and low oil and gas resource and technology cases [44]. We estimated,
for the 100 MW plants, 9.95, 12.19, 15.69, and 23.1 cents/kWh for Las Vegas, San Diego, Jacksonville,
and New York, respectively. Given that these estimates are calculated without including subsidies and
tax incentives, the cost seems to be comparable.



Energies 2020, 13, 3131 15 of 17

Author Contributions: Conceptualization, U.D.; methodology, U.D.; software, A.V., D.P. and U.D.; validation,
A.V. and D.P.; formal analysis, A.V., D.P. and U.D.; investigation, A.V., D.P. and U.D.; resources, U.D.; data curation,
A.V.; writing—original draft preparation, A.V. and D.P.; writing—review and editing, U.D.; visualization, A.V.;
supervision, U.D.; project administration, U.D.; funding acquisition, U.D. All authors have read and agreed to the
published version of the manuscript.

Funding: The work is partially funded by a grant from Devon Energy.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fernández-García, A.; Zarza, E.; Valenzuela, L.; Pérez, M. Parabolic-trough solar collectors and their
applications. Renew. Sustain. Energy Rev. 2010, 14, 1695–1721. [CrossRef]

2. Poullikkas, A.; Kourtis, G.; Hadjipaschalis, I. Parametric analysis for the installation of solar dish technologies
in Mediterranean regions. Renew. Sustain. Energy Rev. 2010, 14, 2772–2783. [CrossRef]

3. Poullikkas, A.; Hadjipaschalis, I.; Kourtis, G. The cost of integration of parabolic trough CSP plants in isolated
Mediterranean power systems. Renew. Sustain. Energy Rev. 2010, 14, 1469–1476. [CrossRef]

4. Montes, M.J.; Abánades, A.; Martínez-Val, J.M. Performance of a direct steam generation solar thermal power
plant for electricity production as a function of the solar multiple. Sol. Energy 2009, 83, 679–689. [CrossRef]

5. Montes, M.J.; Abánades, A.; Martínez-Val, J.M.; Valdés, M. Solar multiple optimization for a solar-only
thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Sol. Energy 2009,
83, 2165–2176. [CrossRef]

6. Desai, N.B.; Bandyopadhyay, S. Optimization of concentrating solar thermal power plant based on parabolic
trough collector. J. Clean. Prod. 2015, 89, 262–271. [CrossRef]

7. Odeh, S.D.; Morrison, G.L.; Behnia, M. Modelling of parabolic trough direct steam generation solar collectors.
Sol. Energy 1998, 62, 395–406. [CrossRef]

8. Post, A.D.; King, B.V.; Kisi, E.H. Computational model and optimisation of a vacuum diode thermionic
generator for application in concentrating solar thermal power. Appl. Therm. Eng. 2017, 117, 245–253.

9. Bishoyi, D.; Sudhakar, K. Modeling and performance simulation of 100 MW PTC based solar thermal power
plant in Udaipur India. Case Stud. Therm. Eng. 2017, 10, 216–226.

10. Ruegamer, T.; Kamp, H.; Kuckelkorn, T.; Schiel, W.; Weinrebe, G.; Nava, P.; Riffelmann, K.; Richert, T.
Molten salt for parabolic trough applications: System simulation and scale effects. Energy Procedia 2014,
49, 1523–1532. [CrossRef]

11. Lenert, A.; Wang, E.N. Optimization of nanofluid volumetric receivers for solar thermal energy conversion.
Sol. Energy 2012, 86, 253–265. [CrossRef]

12. Ramteen, S.; Denholm, P. The value of concentrating solar power and thermal energy storage. IEEE Trans.
Sustain. Energy 2010, 1, 173–183.

13. Avila-Marin, A.L.; Fernandez-Reche, J.; Tellez, F.M. Evaluation of the potential of central receiver solar power
plants: Configuration, optimization and trends. Appl. Energy 2013, 112, 274–288. [CrossRef]

14. Gur, M.; Epstein, M. A novel power block for CSP systems. Sol. Energy 2010, 84, 1761–1771.
15. Sait, H.H.; Martinez-Val, J.M.; Abbas, R.; Munoz-Anton, J. Fresnel-based modular solar fields for

performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors.
Appl. Energy 2015, 141, 175–189. [CrossRef]

16. Desai, N.B.; Bandyopadhyay, S. Integration of parabolic trough and linear Fresnel collectors for optimum
design of concentrating solar thermal power plant. Clean Technol. Environ. Policy 2015, 17, 1945–1961.
[CrossRef]

17. Boukelia, T.E.; Arslan, O.; Mecibah, M.S. ANN-based optimization of a parabolic trough solar thermal power
plant. Appl. Therm. Eng. 2016, 107, 1210–1218. [CrossRef]

18. Cabello, J.M.; Cejudo, J.M.; Luque, M.; Ruiz, F.; Deb, K.; Tewari, R. Optimization of the size of a solar thermal
electricity plant by means of genetic algorithms. Renew. Energy 2011, 36, 3146–3153. [CrossRef]

19. Dowling, A.; Zheng, T.; Zavala, V. Economic assessment of concentrated solar power technologies: A review.
Renew. Sustain. Energy Rev. 2017, 72, 1019–1032. [CrossRef]

20. Dominquez-Munoz, F.; Cejuda-Lopez, J.; Carrillo-Andres, A.; Ruiv, C. Design of solar thermal systems under
uncertainty. Energy Build. 2012, 47, 474–484. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2010.03.012
http://dx.doi.org/10.1016/j.rser.2010.07.021
http://dx.doi.org/10.1016/j.rser.2010.01.003
http://dx.doi.org/10.1016/j.solener.2008.10.015
http://dx.doi.org/10.1016/j.solener.2009.08.010
http://dx.doi.org/10.1016/j.jclepro.2014.10.097
http://dx.doi.org/10.1016/S0038-092X(98)00031-0
http://dx.doi.org/10.1016/j.egypro.2014.03.161
http://dx.doi.org/10.1016/j.solener.2011.09.029
http://dx.doi.org/10.1016/j.apenergy.2013.05.049
http://dx.doi.org/10.1016/j.apenergy.2014.11.074
http://dx.doi.org/10.1007/s10098-015-0918-9
http://dx.doi.org/10.1016/j.applthermaleng.2016.07.084
http://dx.doi.org/10.1016/j.renene.2011.03.018
http://dx.doi.org/10.1016/j.rser.2017.01.006
http://dx.doi.org/10.1016/j.enbuild.2011.12.031


Energies 2020, 13, 3131 16 of 17

21. Jain, A.; Tuyet, V.; Mehta, R.; Mittala, S. Optimizing the Cost and Performance of Parabolic Trough Solar
Plants with Thermal Energy Storage in India. Environ. Prog. Sustain. Energy 2013, 32, 824–829. [CrossRef]

22. Meybodi, M.; Beath, A. Impact of cost uncertainties and solar data variations on the economics of central
receiver solar power plants: An Australian case study. Renew. Energy 2016, 93, 510–524. [CrossRef]

23. Hanel, M.; Escobar, R. Influence of solar energy resource assessment uncertainty in the levelized electricity
cost of concentrated solar power plants in Chile. Renew. Energy 2013, 49, 96–100. [CrossRef]

24. Ho, C.; Kolb, G. Incorporating Uncertainty into Probabilistic Performance Models of Concentrating Solar
Power Plants. J. Sol. Energy Eng. 2010, 132, 031012. [CrossRef]

25. Pousinho, H.M.I.; Contreras, J.; Pinson, P.; Mendes, V.M.F. Robust optimisation for self-scheduling and
bidding strategies of hybrid CSP—Fossil power plants. Int. J. Electr. Power Energy Syst. 2015, 67, 639–650.
[CrossRef]

26. Poland, J.; Stadler, K. Stochastic Optimal Planning of Solar Thermal Power. In Proceedings of the 2014 IEEE
Conference on Control Applications (CCA) Part of 2014 IEEE Multi-Conference on Systems and Control,
Antibes, France, 8–10 October 2014.

27. Dominguez, R.; Conejo, B. Optimal offering strategy for a concentrating solar power plant. Appl. Energy
2012, 98, 316–325. [CrossRef]

28. Guédeza, R.; Spellinga, J.; Laumerta, B. Thermoeconomic Optimization of Solar Thermal Power Plants with
Storage in High-Penetration Renewable Electricity Markets. Energy Procedia 2014, 57, 541–550. [CrossRef]

29. Li, Q.; Wang, J.; Zhang, Y.; Fan, Y.; Bao, G.; Wang, X. Multi-Period Generation Expansion Planning for
Sustainable Power Systems to Maximize the Utilization of Renewable Energy Source. Sustainability 2020,
12, 1083. [CrossRef]

30. Sahin, K.; Diwekar, U. Better Optimization of Nonlinear Uncertain Systems (BONUS): A New Algorithm
for Stochastic Programming Using Reweighting through Kernel Density Estimation. Ann. Oper. Res. 2004,
132, 47–68. [CrossRef]

31. SAM. Available online: https://sam.nrel.gov/sites/sam.nrel.gov/files/content/documents/pdf/sam-help.pdf
(accessed on 16 June 2020).

32. Mubarak, R.; Hofmann, M.; Riechelmann, S.; Seckmeyer, G. Comparison of modelled and measured tilted
solar irradiance for photovoltaic applications. Energies 2017, 10, 1688. [CrossRef]

33. Ceci1, M.; Corizzol, R.; Malerba, D.; Rashkovska, A. Spatial autocorrelation and entropy for renewable
energy forecasting. Data Min. Knowl. Discov. 2019, 33, 698–729. [CrossRef]

34. Diwekar, U.M. Introduction to Applied Optimization; Springer: New York, NY, USA, 2008.
35. Diwekar, U.; David, A. BONUS Algorithm for Large Scale Stochastic Nonlinear Programing Problems; Springer:

Berlin/Heidelberg, Germany, 2015.
36. Charnes, A.; Cooper, W.W. Chance-constrained programming. Manag. Sci. 1959, 5, 73–79. [CrossRef]
37. Ozturk, U.; Mazumdar, M.; Norman, B. A solution to the stochastic unit commitment problem using chance

constrained programming. IEEE Trans. Power Syst. 2004, 19, 1589–1598. [CrossRef]
38. Wei, J.; Zhanga, Y.; Wanga, J.; Caob, X.; Khana, M.A. Multi-Period Planning of Multi-Energy Microgrid with

Multi-Type Uncertainties Using Chance Constrained Information Gap Decision Method. Appl. Energy 2020,
260, 114188. [CrossRef]

39. Chowdhury, N.; Pilo, F.; Pisano, G. Optimal Energy Storage System Positioning and Sizing with Robust
Optimizatio. Energies 2020, 13, 512. [CrossRef]

40. Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming; Springer: New York, NY, USA, 1997.
41. Ruszczynski, A. A regularized decomposition for minimizing a sum of polyhedral functions. Math. Program.

1986, 35, 309. [CrossRef]
42. Rockafellar, R.T.; Wets, R.J.-B. Scenarios and policy aggregation in optimization under uncertainty.

Math. Oper. Res. 1991, 16, 119. [CrossRef]
43. Dantzig, G.B.; Infanger, G. Large scale stochastic linear programs—Importance sampling and Bender

decomposition. In Computational and Applied Mathematics; Brezinski, C., Kulisch, U., Eds.; Stanford University:
Stanford, CA, USA, 1991; pp. 111–120.

44. Higle, J.L.; Sen, S. Stochastic decomposition: An algorithm for two-stage linear programs with recourse.
Math. Oper. Res. 1991, 16, 650–669. [CrossRef]

45. Diwekar, U.; Ulas, S. Sampling Techniques. In Kirk-Othmer Encyclopedia of 358 Chemical Technology, Online
ed.; John and Wiley and Sons: Hoboken, NJ, USA, 2007; Volume 26, p. 998.

http://dx.doi.org/10.1002/ep.11660
http://dx.doi.org/10.1016/j.renene.2016.03.016
http://dx.doi.org/10.1016/j.renene.2012.01.056
http://dx.doi.org/10.1115/1.4001468
http://dx.doi.org/10.1016/j.ijepes.2014.12.052
http://dx.doi.org/10.1016/j.apenergy.2012.03.043
http://dx.doi.org/10.1016/j.egypro.2014.10.208
http://dx.doi.org/10.3390/su12031083
http://dx.doi.org/10.1023/B:ANOR.0000045276.18995.c8
https://sam.nrel.gov/sites/sam.nrel.gov/files/content/documents/pdf/sam-help.pdf
http://dx.doi.org/10.3390/en10111688
http://dx.doi.org/10.1007/s10618-018-0605-7
http://dx.doi.org/10.1287/mnsc.6.1.73
http://dx.doi.org/10.1109/TPWRS.2004.831651
http://dx.doi.org/10.1016/j.apenergy.2019.114188
http://dx.doi.org/10.3390/en13030512
http://dx.doi.org/10.1007/BF01580883
http://dx.doi.org/10.1287/moor.16.1.119
http://dx.doi.org/10.1287/moor.16.3.650


Energies 2020, 13, 3131 17 of 17

46. Diwekar, U.M.; Kalagnanam, J.R. An efficient sampling technique for optimization under uncertainty.
AIChE J. 1997, 43, 440. [CrossRef]

47. Eia. Annual Energy Outlook 2015. Available online: https://www.eia.gov/outlooks/aeo/pdf/0383(2015).pdf
(accessed on 16 June 2020).

48. Eia. Annual Energy Outlook 2019. Available online: https://www.eia.gov/outlooks/aeo/pdf/aeo2019.pdf
(accessed on 16 June 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/aic.690430217
https://www.eia.gov/outlooks/aeo/pdf/0383(2015).pdf
https://www.eia.gov/outlooks/aeo/pdf/aeo2019.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Solar Technologies 
	Role of Optimization and Uncertainties in Solar Power Systems 
	Motivation and Problem Formulation 

	The System Advisory Model and Problem Definition 
	Problem Definition and Decision Variables 
	Direct Capital Costs 
	Indirect Capital Costs 

	The BONUS Algorithm 
	Results and Discussions 
	Computational Savings 
	Effect of Individual Decision Variables 

	Summary and Future Work 
	References

