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Nanomaterials and nanostructures with multi-functional properties found widespread applications such
as electronics, optics, and coatings that can be fabricated using Atomic Layer Deposition (ALD). ALD is a
vapor phase deposition technique to generate thin films of metals and metal oxides on a substrate. In this
process, a precursor, which often comprises of organic functional groups that surround the depositing
metal, chemisorbs on the substrate or reacts with the surface sites and with each other. Precursor
chemisorption on the substrate leads ALD to be a self-limiting process. Thus, the precursor(s) should
be chosen in a way to enhance deposition based on the ALD conditions. For a given application, it is prac-
tically impossible to carry out a large number of experiments using numerous precursors with varied
deposition conditions to find the one that maximizes the growth rate in ALD. In addition, only existing
precursors can be tested experimentally. The overall objective of this work is to develop a computational
tool for the in-silico design of precursor materials using adsorbate solid solution theory (ASST). In the first
part of this paper, we apply the ASST to derive properties of the functional groups present in the precur-
sor using a new Group Contribution Method (GCM). The GCM is successfully derived and compared with
the experimental data from ALD. The method shows good agreement and is useful for the design of novel
materials. In the second part of this paper, using the thermodynamic properties as obtained from GCM,
we develop a computer-aided molecular design (CAMD) framework for the optimal design of novel pre-
cursor materials with enhanced deposition properties for the ALD of metal oxides and metals. The meta-
heuristic efficient ant colony optimization algorithm (EACO) developed in-house is used for both parts.
CAMD is a combinatorial optimization methodology, where molecules with optimal desired properties
are generated from functional groups. The precursor selection optimization problem is posed as a mixed
integer nonlinear programming problem, which is solved using EACO. The ALD growth kinetics is used as
an objective of optimization and a solution is validated with thermodynamic constraints. Along with the
number of groups, the temperature is also included in the optimization framework as decision variables.
Forty-one novel titanium precursor molecular structures for ALD are generated with growth rates ranging
from 1.23 Å/cycle to as high as 1.65 Å/cycle. Thus, these precursors have shown growth rates higher than
the known titanium precursors. ALD growth rate is found to be a function of the combination of the pre-
cursor functional groups as well as temperature with a complex correlation among them.
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Nomenclature

A Area (m2)
Ag Van der Waals surface area (cm2/mol)
anm Interaction parameters
c Number
C1 Initial concentration of adsorbate (mol/L)
Eq Total number of equations used to solve the problem
Err Error
GE Gibbs excess free energy (J)
GR Growth rate (nm/cyc)
gad Free energy of immersion of the adsorbed solution (J/kg)
h Thickness (nm)
l Bond distances (Å)
M0 Molecular weight of adsorbent (g/mol)
Ngt Total functional groups
NA Avogadro’s number
n Molar quantity (moles)
P Pressure (Pa)
Pv Vapor pressure (Torr)
q Adsorption capacity (mol/g)
qi Parameter for Vander Waal surface calculation
Q Molar flow rate (mole/s)
Qg Van der Waals group surfaces of group K (m2)
ri Parameter for van der Waal volume calculation
rw Van der Waals radius (Å)
r1; r2 Van der Waals radii for both atoms (Å)
Rg Van der Waals group volumes of group K (m3)
R Ideal gas constant (8.314 J/mol K)
t Precursor pulse time (s)
T Temperature of adsorption (K)
vp Pore volume of the adsorbent (cm3/g)
voi Molar volume of the respective fluid (cm3/mol)
Vg Van der Waals volume (cm3/mol)
V Volume (cm3)
x Molar fraction

Greek letters
c Activity coefficient
c�GE;i Activity coefficient of a binary adsorbate solid solution
u� Chemical potential of the wetted solid (J/g)
u�

0i Chemical potential of the wetted solid plus adsorption
of the pure component i (J/g)

ui Volume fraction for UNIFAC calculation
hi Surface area fraction for UNIFAC calculation
Cs

mi Surface phase capacity of component i (mol/g)
q Density (g/mL)

Subscripts
i Component i
0 Adsorbent
1 Adsorbate (Ti or Hf)
2, 3, 4 Component 2, 3, or 4
0i Pure component i or pure adsorbed component i
cyc In one cycle
film In the film
g Group index
j Number of components
ml In each monolayer
T Total
Sln Solution

Superscripts
⁄ Adsorbate solid solution
1 Initial feed
ad Adsorption
b Bulk phase
C Combinatorial
C* Combinatorial in ASS phase
cal Calculated
Cb Combinatorial in bulk phase
cyc Cycle
E* Excess adsorbate solid solution
Es Excess of the surface phase
exp Experimental
ml Monolayer
n Adsorbate solid solution
opt Optimal
R Residual
R* Residual in the ASS phase
Rb Residual in the bulk phase
s Surface phase
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1. Introduction

Multifunctional thin-film nanomaterials have found wide-
spread applications in different areas such as in electronics, optics,
protective and decorative coatings, and biomedical implants.
Design, development, and implementation of new thin-film tech-
nology is often time-consuming, expensive, and heuristic. It took
nearly 15,000-panel trails and two and a half years for U.S. Naval
Air Systems Command (NAVAIR), to come up with an acceptable
alternative to toxic hexavalent chromium (Cr + 6) used in chromate
conversion coating (Matzdorf et al., 2002). High-temperature
dielectric is another area where new material development is
actively pursued to increase the temperature-endurance of capac-
itors used in high-temperature aerospace power electronic sys-
tems for the future generation of nanoelectronics (Xu et al.,
2012). Many such applications warrant extensive materials search.
No proven theory or method yet exists to help us expedite material
selection/property prediction during this technology development
cycle. It has been realized that simulation-based materials design
has the potential to dramatically reduce the need for expensive
down-stream characterization and testing for these materials.
2

However, currently, we don’t even have a good grasp of how com-
bining different elements into particular compounds gives them
specific properties, or how these properties give materials func-
tional qualities.

Nanomaterials and nanostructures with multi-functional prop-
erties and widespread applications can be fabricated using Atomic
Layer Deposition (ALD). ALD is a vapor phase technique in which
the deposition of thin films takes place on a substrate. Sequential
and self-limiting surface reactions that happen in the ALD process
create conformal and pinhole-free films, which can be precisely
controlled over thickness and composition (Bishal et al., 2015;
George, 2010). The thin films produced by ALD have extensive
applications such as in semiconductors (Kim, 2003), optical coat-
ings, solar cells (M Ritala et al., 1994), ferroelectric material
(Chang et al., 2016), high-k transistors, fuel cells (Johnson et al.,
2014), and biomedical applications (Bishal et al., 2017, 2018;
Shahmohammadi et al., 2020a). A precursor used in this process
has certain desirable qualities, such as being volatile, thermally
stable, and highly reactive. Precursor molecules, which are mostly
a metal surrounded by organic functional groups, chemisorb on the
substrate or react with the surface sites and with each other. Part
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of the molecule subsequently desorbs from the surface after com-
pletion of the reaction. The precursors then proceed to react with
other unreacted surface areas and produce a conformal film. Pre-
cursor chemisorption on the substrate saturates, leading to a
self-limiting process and eventually forms films with accurate
thickness at Ångström levels (Aaltonen et al., 2003; Leskelä and
Ritala, 2002). The ALD precursor is usually selected based on few
key physical properties, which is thought to produce thin films
with the desired property (e.g., adsorption capacity, dielectric con-
stant, leakage current, gas impermeability, electrical conductivity,
photochemical activity, and antimicrobial activity) (Huang, 2017;
Leskelä and Ritala, 2002; Majumder et al., 2007; Xu et al., 2012).
The structure of the precursor and precursor adsorption are essen-
tial elements of ALD; hence, the optimal design of novel precursor
materials is at the center of this study. In the present work, we gen-
erate novel precursors with enhanced properties for the ALD pro-
cess with the aid of computer-aided molecular design (CAMD).

There are limited theoretical models and not any classical
thermodynamic model available to describe ALD. Puurunen
(Puurunen, 2003a) has derived a model to describe the growth
per cycle in ALD as a function of the chemistry of the growth and
relates the growth per cycle to the size of the reactant and the
chemisorption process involved. Elliot (Elliott, 2005) presented a
theoretical model for the atomic-scale mechanism of a single
ALD process and explained how the process conditions might affect
the growth rate. Gordon et al. (Gordon et al., 2003) developed a
theory to deposit uniform coatings in narrow holes of the arbitrary
cross-section. Moreover, Kinetic Monte Carlo (KMC) which is a
stochastic based model along with Density Functional Theory
(DFT) have been applied several times to study the mechanism of
ALD or design precursors (Huang et al., 2014; Park et al., 2016;
Xu and Musgrave, 2004). However, there exists no model to predict
the growth rate versus precursor pulse time in order to develop
novel precursors for ALD from molecular structures.

In the present work, a theoretical framework has been devel-
oped to model the growth rate of ALD as a function of precursor
pulse time by applying the Adsorbate Solid Solution Theory (ASST)
(Berti et al., 1999). ASST incorporates the influence of the func-
tional groups through the Group Contribution Method (GCM)
methodology (Benavides and Diwekar, 2014). In GCM, the thermo-
dynamic properties of a compound are predicted from its molecu-
lar structure. The molecule is split up into structural and functional
groups that can be composed of individual atoms or small groups
of atoms. The GCM parameter of a functional group is estimated
by the number of times a particular group appears in the adsorbent
(solid substrate in ALD) multiplied by its contribution. The parame-
trized GCMs are used for the estimation of binary interaction
parameters between different groups, where there is no available
experimental data and can avoid the need for expensive experi-
mentation for that purpose (Khalifa and Lue, 2017). Estimation of
binary interaction parameter for calculation of activity coefficients
for separation process like distillation requires the use of the
Universal Quasi-chemical Functional-group Activity Coefficient
(UNIFAC) model for GCM to predict the vapor-liquid equilibrium
(Fredenslund, 2012). In ASST, a modified version of the UNIFAC
model is presented that uses the model to compute the activity
coefficient in the adsorbate solid solution. ASST has been used
effectively for the prediction of adsorption of radioactive elements
as well as arsenic in clay-based adsorbents (Benavides et al., 2015;
Benavides and Diwekar, 2014; Doshi et al., 2018) and metal ions in
polymer resin (Mukherjee et al., 2017). In the present work, an
extended version of ASST is used to predict the chemisorption on
a silicon substrate in ALD. An optimization framework based on
efficient ant colony optimization (EACO) (Diwekar and
Gebreslassie, 2016; Gebreslassie and Diwekar, 2015) is used to
3

minimize the difference between predicted and experimental data
in order to obtain the optimal value of the interaction parameter.

CAMD generates molecules with desired properties from func-
tional groups using a technique that is reverse to that of GCM.
While GCM estimates the properties of the molecule based on
the functional groups comprising the molecule, CAMD, on the
other hand combines different functional groups to generate mole-
cules having desired properties (Kim and Diwekar, 2002). CAMD
methods have been applied extensively in various areas such as
extraction solvents (Cheng and Wang, 2008; Gebreslassie and
Diwekar, 2015; Giovanoglou et al., 2003; Kim et al., 2004;
Marcoulaki and Kokossis, 2000; Samudra and Sahinidis, 2013),
polymer designs (Hostrup et al., 1999; Mukherjee et al., 2017),
degreasing solvents (Trevizo et al., 2000), blanket wash solvents
(Chemmangattuvalappil et al., 2009; Sinha and Achenie, 2001),
absorption solvents (Eden et al., 2004; Eljack and Eden, 2008;
Odele and Macchietto, 1993; Pistikopoulos and Stefanis, 1998;
Salazar et al., 2013), refrigerant design (Churi and Achenie, 1996;
Duvedi and Achenie, 1996), distillation solvents (Kim et al., 2004;
Kim and Diwekar, 2002; Xu and Diwekar, 2007, 2005), reaction sol-
vents (Folic et al., 2008; Lin et al., 2005), catalysts (Lin et al., 2005),
value added products (Camarda and Sunderesan, 2005), crystal-
lization solvent (Karunanithi et al., 2006), and foaming agents
(Yamamoto and Tochigi, 2008). CAMD has been used effectively
for the design of novel clay-based adsorbents to adsorb radioactive
elements from flowback/produced water (Benavides et al., 2015)
and remove arsenic from water (Doshi et al., 2018). Mukherjee
et al. (Mukherjee et al., 2017) have used CAMD for the design of
novel polymer resin for metal ion removal from water. However,
this is the first time such an approach is going to be applied to opti-
mally design new precursor materials with enhanced properties
for ALD.

In the first part of this work, we have used experimental satura-
tion curves from four different ALD systems (Deshpande et al.,
2004; Liu et al., 2005; Selvaraj et al., 2013; Xie et al., 2007) to
model the chemisorption process during ALD using a modified ver-
sion of ASST. The thermodynamic properties (i.e., binary interac-
tion parameters between precursor functional groups with each
other and with the substrate) are estimated with UNIFAC GCM.
Then the growth rates were computed using a model equation
derived from ASST, which is, in turn, compared to the experimental
growth rates. It has been shown that one can predict the growth
rate of an ALD system theoretically with this new method, without
requiring expensive experiments. In the second part of this work,
these estimated properties of the functional groups are used to
generate new precursor molecules using CAMD. Gebreslassie and
Diwekar (Gebreslassie and Diwekar, 2015) have used EACO algo-
rithm for CAMD of environmentally benign solvents. Comparison
of their results with different optimization techniques showed
improved solution using EACO that has prompted us to use the
same optimization algorithm. It is practically impossible to synthe-
size numerous precursors and carry out a large number of ALD
experiments with varied deposition conditions in order to find
the optimum one with improved properties. CAMD framework is
used to overcome those issues of design and development of pre-
cursor materials without performing expensive and time-
consuming experiments. Based on the properties of the functional
groups that have already been estimated by GCM, CAMD explores
all combinations and generates possible molecules. From the gen-
erated ones, improved molecules are selected based on the pre-
dicted properties by UNIFAC GCM. Since CAMD uses optimization
to enhance the properties, the generated precursor molecules are
the better ones that maximize the growth rate of ALD.

The paper is organized as follows: the next section (Section 2)
gives the problem formulation followed by a theoretical



Fig. 2. An example of ALD as an adsorption process. ‘‘1” represents the initial
solution, which includes the precursor and inert gas, ‘‘0” represents the substrate,
which is the adsorbent, ‘‘b” is the bulk phase, and ‘‘*” is the ASS phase.
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background that includes model equations and description of the
optimization problem as used in this work. Section 3 gives details
about the case studies used to prove the developed theory followed
by results and discussions from the case studies in Section 4. The
conclusions are given in Section 5.

2. Problem formulation and methodology

2.1. ALD as a chemisorption process

Adsorption is a process in which an atom, ion, or molecule (ad-
sorbate) is separated from a fluid or dissolved solid to adhere to a
surface, called the adsorbent. Adsorption can be physical or chem-
ical, also known as physisorption and chemisorption, respectively.
In each adsorption process, there are two major phases: the bulk
phase and the adsorbed or surface phase. In ALD, the precursor
molecules from the bulk phase are chemisorbed on the substrate
( Puurunen, 2003b), which is the solid phase, and this continues
until the adsorbent reaches its maximum capacity when the sys-
tem reaches adsorption equilibrium. During equilibrium, the
adsorption rate equals the desorption rate, and no more adsorbate
can be adsorbed. An isotherm can describe the adsorption equilib-
rium by plotting the amount of adsorbate adsorbed (q) versus the
concentration of adsorbate in the bulk phase (C). In an isotherm
where the graph begins to show a plateau is the maximum adsorp-
tion capacity. Similarly, in an ALD process, the growth rate forms a
plateau as we increase the precursor pulse time. In this case, after
saturation, further increasing the amount of precursor by increas-
ing the pulse time does not increase the growth rate as the maxi-
mum capacity has been achieved. In the present work, we have
related the growth rate and precursor pulse time to the adsorption
capacity and concentration of the chemisorption process that
occurs in ALD through the enhanced ASST model.

A typical example indicating the effect of precursor pulse time
on growth rate in the ALD process is demonstrated in Fig. 1.
Fig. 1 shows the growth rate versus pulse time of TiO2 on Si
(100) substrate using tetrakis (diethylamino) titanium (TDEAT)
as the precursor (Selvaraj et al., 2013). The effect of the precursor
pulse time on the growth rate of films indicates that there is no sig-
nificant change in growth rate for precursor pulse times beyond
2 s. That confirms ALD is a self-limiting process. Details about
the experiment are given in the case studies (Section 3).

Fig. 2 shows a schematic representation of the adsorption pro-
cess in an ALD reactor. The precursor comprises functional groups
and the metal to be deposited. The precursor compound, along
with inert gas, comprises the initial solution that is pulsed into
the ALD reactor. The substrate acts as an adsorbent. During the
deposition, the functional groups of the precursor and the metal
Fig. 1. Effect of precursor pulse time on TiO2 ALD growth rate. The vertical error
bars indicate film uniformity across the sample (Selvaraj et al., 2013).

4

interact with the substrate. In ASST, contrary to the classical for-
mulation of adsorption equilibrium, the adsorbate phase is consid-
ered as a mixture containing the adsorbate and the adsorbent

(substrate). The Gibbs free energy GE�
� �

of adsorption for the

adsorbate solid solution (ASS) is related to the activity coefficient
of the involved components. The unreacted precursors, along with
the inert gas, comprise the bulk phase. The deposition of Ti using
tetrakis(dimethylamido)titanium (TDMAT) as a precursor is shown
in Fig. 2. In this system, the functional groups of TDMAT and nitro-
gen gas (N2) are shown as an example of the components present
in the initial solution. The bulk phase comprises the unreacted pre-
cursors as well as the purged functional groups of TDMAT from the
substrate along with the N2 gas. The mixture of titanium (Ti) and
silicon (Si) are examples of components in the ASS phase.

Mole balance in ALD
The mole balance equations are used to calculate the number of

moles and mole fractions of each component in different phases, as
mentioned above. Eq. (1) displays the mole balance for each com-
ponent i in an ALD process.

n1
i ¼ n�

i þ nb
i 8i ð1Þ

where ni
1, ni*, and ni

b are the moles of component i in the initial solu-
tion entering the reactor, in the ASS phase, and in the bulk phase,
respectively. In Eq. (1), i 2 1; � � � ;4½ � for the initial composition and
bulk phase (i.e., functional groups of TDMAT comprising the metal
Ti (1), N (2) and CH3 (3), and inert N2 (4)), and i 2 0;1½ � for the
ASS phase, (i.e., Si (0) and Ti (1)).

To calculate the total moles and mole fractions of each compo-
nent in the initial solution, Eqs. (2) and (3) are used:

n1
T ¼

X4
i¼1

n1
i ð2Þ

x1i ¼ n1
i

n1
T

8i ð3Þ

where xi
1 is the mole fraction of component i in the initial solution,

similarly, Eqs. (4) and (5) are used to find the total moles and mole
fractions in the bulk phase.

nb
T ¼

X4
i¼1

nb
i ð4Þ

xbi ¼
nb
i

nb
T

8i ð5Þ

And finally, Eqs. (6) and (7) are used to calculate the total moles
and mole fractions in the ASS phase.

n�
T ¼

X1
i¼0

n�
i ð6Þ



Fig. 3. (a) The total amount of fluid molecules is divided into two independent
phases that are assumed to be homogeneous: the adsorbed or surface phase and the
bulk phase. (b) The adsorbate solid solution is defined as the reference system, and
the bulk phase is considered to be uninfluenced by the solid.
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x�i ¼
n�
i

n�
T

8i ð7Þ

Group contribution method for ALD:
To derive the GCM for ALD, we need to have mole fractions of

the adsorbate in the surface phase and bulk phase, and the adsorp-
tion capacity (mole/g). We start with experimental growth
rate,GRexpð nm

cycleÞ as illustrated in Fig. 1. Fig. 1 was generated by Sel-

varaj et al. (Selvaraj et al., 2013) by depositing TiO2 using TDEAT
where Si (100) was used as the substrate, and nitrogen as the car-
rier gas. It shows the effect of precursor pulse time on TiO2 ALD
growth rate at 200 �C substrate temperature. The bubbler temper-
ature was at 65 �C and the system pressure was 0.5 Torr. To find
the number of moles of titanium (nTi) deposited on the substrate
in each cycle, Eqs. (8)–(13) are used:

hfilm ¼ GRexp � ccyc ð8Þ

cfilmml ¼ hfilm

hTiO2

ð9Þ

In Eqs. (8) and (9), hfilm, ccyc, cml
film, and hTiO2, are referring to the

thickness of the film (nm), number of cycles, number of monolay-
ers in film, and thickness of each TiO2 monolayer (nm), respec-
tively. hTiO2 is calculated based on literature (Puurunen, 2003b,
2003a). For the temperatures we worked on, TiO2 has been consid-
ered amorphous (Deshpande et al., 2004; Liu et al., 2005; Xie et al.,
2007), and its density is 4.23 g/cm3. According to this information,
hTiO2 is estimated to be 0.3 nm. Assuming each TiO2 unit as a cube,
and full monolayer growth, the area each unit would cover (ATiO2),
is 0.3 � 0.3 nm2. This is a simplified assumption which is also con-
sistent with other equations found in the literature (Puurunen,
2003b, 2003a). Therefore, the number of TiO2 units in one mono-
layer (cTiO2ml ) and in the film (cTiO2film ) can be found by Eqs. (10) and
(11):

cml
TiO2

¼ ASi

ATiO2

ð10Þ

cfilmTiO2
¼ cfilmml � cml

TiO2
ð11Þ

As each TiO2 unit contains one titanium, cTiO2film is equal to cTi
film.

Thus, the number of moles of titanium (mole) deposited in film,
(nTifilm), and in each cycle, (nTicyc), can be calculated by:

nfilm
Ti ¼ cfilmTi

NA
ð12Þ

ncyc
Ti ¼ nfilm

Ti

ccyc
ð13Þ

NA in Eq. (12) is Avogadro’s number. The adsorption capacity,
qexp (mole/g) and the mole fractions of titanium in the ASS
phase,x�Ti, can be found by Eqs. 14 and 15, respectively. In these
equations, as the area, thickness, and density of the silicon is
known, its mass (g), (msiÞ, can be calculated. Similarly, multiplying
the molecular weight (g/mol) of titanium by nTi

film results in its mass

(g) in the film, (mfilm
Ti Þ:

qexp ¼
ncyc
Ti

mSi þmfilm
Ti

ð14Þ

x�Ti ¼
ncyc
Ti

nSi þ nfilm
Ti

ð15Þ

In Eqs. (14) and (15), nTicyc is the number of moles of titanium,
which is deposited in one cycle.
5

The corresponding mole fractions in the bulk phase (precursor),
xbi can be calculated from the number of moles of Ti remaining in
the bulk phase. The pulse time (s), t and molar flow of gas (mole/
s);Q are used to calculate nb

Ti, from which the mole fraction in
the bulk, xbi can be calculated as:

nb
Ti ¼ xbTi � Q � t � ncyc

Ti ð16Þ
where xbTi is the mole fraction of Ti in the gas flow. The amount of
precursor increases linearly with pulse time. Therefore, the mole
fractions in the bulk phase for the precursor molecule (and not
the inert gas) is multiplied by the pulse time as shown in Eq. (16)
above.

To derive the GCM, we apply the ASST for the adsorption for this
problem. The ASST is a thermodynamic framework that describes
the adsorption behavior of a fluid on a solid’s surface. This theory
incorporates the influence that functional groups in the adsorbent
have on the adsorption process. Using the activity coefficients in
the surface phase (Si surface) and the bulk phase, one may find
the relationship between the phase equilibriums of each adsorbed
component in the surface phase and the bulk phase. However,
since we are considering chemisorption, we consider mole frac-
tions of groups instead of components used in traditional UNIFAC
based GCMs. The relation of this phase equilibrium for each com-
ponent (group) is described in Eq. (17), as given in Berti et al.
(Berti et al., 1999). It should be noted that we are presenting the
ASST equation in terms of components as per the original refer-
ence. However, as stated earlier, in our case, we have used groups
in the same way as components.

2.2. Adsorbate-solid solution theory

ASST is a thermodynamic framework introduced by Berti et al.
(Berti et al., 1999). In ASST, the adsorbed phase is considered as a
solution of solid (a mixture) containing the adsorbed species and
the adsorbent as the additional component. The idea behind this
theory is that the adsorbed phase is a hypothetical mixture of
the adsorbate and the adsorbent (Fig. 3).

In this theory, the activity coefficients of the adsorbed phase can
be calculated using Excess Gibbs free energy models (GE models),
as shown in Eq. (17). Eq. (17) shows the relationship between
the phase equilibrium of component i in surface and bulk phases
in which the activity coefficient of that component in both phases
has been used:

xbi c
b
i ¼ xsic

s
iexp

gad � gad
0i

RTCs
mi

� �
ð17Þ
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where xi
b and xi

s are the mole fractions and cib and cis are the activity
coefficient of component i, in the bulk and surface phase, respec-
tively. gad and g0i

ad are the free energy of immersion in the adsorbed
solution and in the pure adsorbed species, respectively. R is the
ideal gas constant, T is the absolute temperature, and Cmi

s is the sur-
face phase capacity of component i. Cmi

s is calculated by Eq.18:

Cs
mi ¼

vp

v0i
ð18Þ

In which, vp is the pore volume of the adsorbent and v0i is the
molar volume of the fluid.

In the ASST system, we consider the effect of different structural
and functional groups of the adsorbent on the adsorption behavior.
Eq. (19) shows the relation of the phase equilibrium of group com-
ponent i between bulk and Adsorbate Solid Solution (ASS) phases
based on chemical potentials.

xbi c
b
i ¼ x�i c

�
i expð

u� �u�
0i

RTCs
mi

Þ ð19Þ

In this equation, xi* and ci* are the mole fraction and the activity
coefficient of component i in the ASS phase. The term (u* - u0i*) is
the difference between the chemical potential of the adsorbent
before and after adsorption happens. It can be calculated in term
of Excess Gibbs energy, as well.

u� �u�
0i ¼

1
M0

ðGE� � GEs � GE�
0i Þ ð20Þ

In Eq. (20), M0 is the molar mass of the adsorbent, GE*, GEs, and
G0i
E* are the excess Gibbs free energy of ASS phase, surface phase,

and component i’s adsorption, respectively. All excess Gibbs free
energies are estimated in Joules. To compute excess Gibbs free
energy, it is more convenient to use the activity coefficient as in
Eq. (21):

GE�

RT
¼
Xk
i¼0

n�
i ln c

�
i ð21Þ

In the last equation, ni* is the molar quantity in the ASS phase,
and index 0 refers to the adsorbent, and the activity coefficient can
be computed using a UNIFAC model. The same method was also
applied to solve for the activity coefficient in the surface phase (xis):

GEs

RT
¼
Xk
i¼1

ns
i ln ciðxsi Þ ð22Þ

where nis is the number of moles of component i in the surface phase
that is obtained by the following equation:

ns
i ¼ xsi n

�
Tð1� x�0Þ ð23Þ

In Eq. (23), xis is the fraction of component i in the surface phase
that is calculated using Eq. (24):

xsi ¼
x�i

ð1� x�0Þ
ð24Þ

For the pure component adsorption, the excess Gibbs free
energy G0i

E* is calculated using the activity coefficient for the
adsorption of a pure component (c0i*) computed via Eq. (25):

c�0i ¼ 1þ 1
Cs

miM0
ð25Þ

Modified UNIFAC model:
This modified version of the UNIFAC model is used to compute

the activity coefficient (ci*) as (Berti et al. (Berti et al., 1999)):
ln c�i ¼ ln c�0i þ ln c�GE;i ð26Þ
6

In Eq. (26), cGE,i* is the part of the activity coefficient which
depends on concentration and is divided into combinatorial (ciC*)
and residual (ciR*) parts:

ln c�GE;i ¼ ln cC
�

i þ ln cR
�

i ð27Þ
Each of the combinatorial and residual parts is calculated by

Eqs. (28) and (29), respectively:

ln cC�i ¼ ln cC�GE;iðx�i Þ � ln cC�GE;iðx�0iÞ ð28Þ

ln cR�i ¼ ln cR�GE;iðx�i Þ � ln cR�GE;jðx�0iÞ ð29Þ
cGE,i*(x0i*) is the activity coefficient of pure adsorbate and the

adsorbent.

Activity coefficient for bulk phase and adsorbate solid solution
phase:

In order to estimate the activity coefficients in the bulk phase,
the UNIFAC model has been applied. The UNIFAC model is divided
into two parts: the combinatorial and the residual parts, which is
shown in Eq. (30):

ln cbi ¼ ln cCbi þ ln cRbi ð30Þ
where ciCb and ciRb are the activity coefficients for the combinatorial
part and residual part of the bulk phase, respectively. The combina-
torial part can be calculated by:

ln cCbi ¼ ln
ui

xbi

 !
þ 5qi ln

hi
ui

� �
þ li �ui

xbi

Xj

1

xbj lj i–j ð31Þ

where

li ¼ 5 ri � qið Þ � ðri � 1Þ ð32Þ

hi ¼ qix
b
iPM

j qjxbj
ð33Þ

ui ¼
rixbiPM
j rjx

b
j

ð34Þ

In the latest equations, qi and ri are the parameters for van der
Waals surface area and van der Waals radius of the component i
and are calculated by Eqs. (35) and (36). hi and ui are the molecular
surface area and volume fraction of component i, respectively, and
j:1,2. . .M represents the number of components.

ri ¼
XNgt

g

#ðiÞ
g Rg ð35Þ

qi ¼
XNgt

g

#ðiÞ
g Qg ð36Þ

Here, g is the group index, and it is from 1 to Ngt, which is the
total functional groups of the molecule. Rg and Qg are the constants
representing van der Waals volume, and surface area and they are
obtained from atomic and molecular structure data.

For the residual part,

lnCg ¼ Qg ½1� ln
Xm
1

hmWmg

 !
�
Xm
1

hmWgmPn
1hnWnm

� ð37Þ

where m and n are representative of all functional groups.
The group fraction (Xm) and the surface area fraction (hm) are

calculated using Eqs. (38) and (39), respectively:

Xm ¼
Pj

i#
ðiÞ
m xbjPj

1

Pn
1#

ðiÞ
mvb

j

ð38Þ



Table 1
Valences of each group.

Group Ti N CH2 CH3

Valence +4 �3 0 +1
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hm ¼ QmXmPn
1QnXm

ð39Þ

The parameter Wnm which is appeared in Eq. (37), is given by:

Wnm ¼ expð�anm=TÞ ð40Þ
where, anm is the group interaction parameters for the UNIFAC
model, and T is the temperature in Kelvin. At the deposition temper-
ature, T, the parameterWnm is estimated using the group interac-
tion parameters and T to estimate the activity coefficient.

2.3. CAMD for ALD precursor design

The primary objective of this study is to design novel precur-
sor materials for ALD, which results in enhanced deposition
growth rate, shortening the overall deposition time. The growth
rate (GR) (nm/cyc) is defined as the thickness of deposited thin
film per cycle of deposition. It depends on the incident flux of
the precursor and the sticking probability of the molecules.
The property depends on adsorption temperature as well
(Johnson et al., 2014). The growth rate can also be estimated
from:

maxGR ¼
kg ; T

n�
i NAhi

cml
i

ð41Þ

where ni* is the moles of adsorbate (titanium) which are
adsorbed on silicon in each cycle (moles/cyc), NA is Avogadro’s
number (number of constituent particles/mole), hi is the thick-
ness of each adsorbate (nm), and ci

ml is the number of adsorbates
in monolayer. A large value of GR will be due to a large value
for ni*, indicating a higher amount of adsorbate has been
adsorbed on the substrate. Thus, maximizing the growth rate
will result in reducing the deposition time when the specific film
thickness is desired. The objective function in Eq. (41) is subject
to a set of linear and nonlinear equality and inequality con-
straints, including material balance, bounds for the decision vari-
ables, structural feasibility, and thermodynamic equilibrium (as
described above). Here, the decision variables, represented by
kg , are the number of times each functional group (gÞ appears
in the precursor molecule, and the process temperature, T. In
this work, we are using three functional groups (N, CH2 and
CH3) obtained from two different precursors, TDMAT and TDEAT,
the interaction parameters of which are obtained in the first part
of this paper.

Eqs. (42) and (43) represent the constraints for mole fractions in
bulk and ASS phases, respectively.

0 � xbi � 1 8i 2 1 � � �4½ � ð42Þ

0 � x�i � 1 8i 2 0 and 1½ � ð43Þ
Eq. (44) corresponds to the non-negativity of the growth rate

(D1*). The deposition rate parameter itself can be computed by
Eq. (45).

D�
1 	 0 ð44Þ

D�
1 ¼ n�

1

m�
T

ð45Þ

In which, mT* (g) is the total mass, including the mass of silicon
substrate and the mass of adsorbed titanium.

Eq. (46) displays the molar balance constraints in which the
entering moles have to be equal or greater than the sum of the
moles depositing on the substrate and the moles staying in the
bulk phase after equilibrium.

n1
T � ðn�

T þ nb
TÞ 	 0 ð46Þ
7

And Eq. (47) represents the constraints for the total number of
moles in the bulk phase that lies between no adsorption to total
adsorption of all moles entering the ALD chamber:

0 � nb
T � n1

T ð47Þ
To make sure the thermodynamic equilibrium is satisfied, Eq.

(48) is applied in which tol stands for tolerance and is set to 10-8.
The calculation of each term in Eq. (48) are described in detail in
the first part of this paper (Eq. (19)). It is worth mentioning that Cmi-
s is the surface phase capacity of the substrate (silicon).

xbi c
b
i � x�i c

�
i expð

u� �u�
0i

RTCs
mi

Þ
����

���� � tol ð48Þ

Eq. (49) represents the structural feasibility constraint which
determines the structure of the molecule.

XNgt

g¼1

Val kg
� � � kg ¼ 0 ð49Þ

0 � kg � 20 8g 2 integer 1 � � �3½ � ð50Þ
In Eq. (49), Val (kg) is the valence of each group while kg is the

number of times each group appears in the newly designed mole-
cule of the precursor, and Ngt is the total number of functional
groups used. Table 1 shows the valence of each group used to pre-
dict new precursors. Since CH2 always appears with CH3, the
valence of CH2 is not considered independently in this work. Eq.
(50) shows the boundaries for kg as a discrete variable which
may vary between 0 and 20, i.e., each functional group can appear
a maximum of twenty times or it may not appear at all. The index g
represents the functional groups, which are between 1 and 3,
according to the three groups: N, CH2, and CH3. Therefore, the three
functional groups, each of them may appear up to a maximum of
20 times with different combinations to produce novel precursor
molecules. The general structure of the candidate molecule will
be according to:

Nð Þk1 CH2ð Þk2 CH3ð Þk3
Each of these candidate structures is screened for structural fea-

sibility as in Eq. (49).

2.4. Solution method for ALD precursor design

The precursor design problem is formulated as a mixed integer
nonlinear programming (MINLP) problem seeking to maximize the
growth rate in ALD subject to the constraints mentioned in Sec-
tion 2.3. The MINLP problem is solved by a novel metaheuristic
optimization algorithm called Efficient Ant Colony Optimization
(EACO). The solution strategy which combines the EACO algorithm
and CAMD is presented in this section. Fig. 4 shows the solution
strategy in which the EACO algorithm generates new precursor
molecules from the functional groups, while CAMD predicts the
properties of the molecules.

EACO for precursor molecule generation
The precursor design is an MINLP problem that is a non-convex

in nature which challenges the derivative-based methods.
However, a metaheuristic optimization strategy such as genetic
algorithm, simulated annealing, or ant colony optimization is



Fig. 4. The solution strategy for the ALD precursor design problem.
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found to be appropriate for the problem (Dorigo, 1992; Holland,
1992; Kirkpatrick et al., 1983). The ant colony optimization
(ACO) algorithm is a probabilistic technique initially proposed by
Dorigo (Dorigo, 1992; Dorigo and Di Caro, 1999). The inspiration
for this metaheuristic optimization method was the foraging
behavior of the real ants where the cooperation of some simple,
independent, and asynchronous agents results in finding a good
solution to a problem at hand. Real ants randomly look for food
in the vicinity of their nests, and if one of them locates a food
source, on the way back to the nest, it releases a chemical sub-
stance named pheromone. The pheromone will act as an indirect
way of communication between ants since it attracts the other
members of the colony to follow the same path. As the pheromone
will evaporate over time, only the routes that were used more fre-
quently will remain attractive due to a higher concentration of
pheromone. Pheromone evaporation has an advantage that the
unfavorable routes will be forgotten over time, and this reduces
the chance of finding a locally optimal solution. Therefore, the
shorter the routes, the more attractive they are for the ants, and
these routes will have higher concentrations of pheromone than
longer paths. Consequently, more ants will be attracted to the
shorter routes in the future, and the ant colony will hopefully dis-
cover the shortest path.

A similar mechanism is implied by the ACO algorithm to solve
optimization problems. In ACO algorithms, artificial ants as the
stochastic candidate for solution construction procedures utilize
a pheromone model and possibly available heuristic information
8

of the mathematical model. The only way of communication
among the artificial ants is the artificial pheromone trails (i.e.,
numeric values). A similar mechanism to the evaporation of the
pheromone trail of the real ants would be pheromone decay, which
allows the artificial ants to forget the past history and focus on new
promising search directions. According to the information learned
in the preceding iteration, the pheromone values are updated and
leads to very good and, hopefully, a globally optimal solution.
Diwekar and Gebreslassie (Diwekar and Gebreslassie, 2016;
Gebreslassie and Diwekar, 2015) derived a new variant of ant col-
ony optimization called EACO, which is used in this work to solve
the combinatorial problem of designing novel precursors for ALD.
In EACO, a better n-dimensional uniformity property of Hammers-
ley Sequence Sampling (HSS) is used to generate the random num-
bers, which improves the performance of the conventional ACO
algorithm for combinatorial, continuous, and mixed variable opti-
mization problems (Diwekar and Ulas, 2000). The major steps in
EACO algorithm, used to solve the ALD precursor design problem,
is shown in Table 1 and the algorithm proposed in this work that
combines CAMD and EACO algorithm is shown in Fig. 4.

As displayed in Fig. 4, the algorithm parameters, the functional
groups as building blocks, and their properties such as volume and
surface area parameters, and the UNIFAC interaction parameters
between the components (functional groups) as obtained in the
first part of this paper series are first introduced. The problem of
CAMD involves finding an optimal combination of numbers for
each group combined to form a precursor molecule and tempera-
ture of the process to enhance the growth rate. The step involves
selecting the number for each group and the temperature to gener-
ate the precursor molecules. Once the precursor molecule is gener-
ated, the CAMD predicts the precursor properties, such as the
activity coefficients and the growth rate. Then, the predicted prop-
erties are examined by molar balance equations, constraints, and
thermodynamic conditions. If the optimal criterion is satisfied,
the generated precursor molecule is a candidate precursor; other-
wise, another molecule is generated by another possible combina-
tion of the functional groups.

The EACO solver used to optimize the precursor design problem
is shown in Table 2. The program needs an initial set of parameters
as following: number of Ants (nAnts), size of the solution archive
(ks), number of continuous (NC), and discrete decision variables
(ND), the pheromone evaporation factor (q), an ACO algorithm
parameter (q), and the termination criteria. The termination crite-
ria are the maximum number of iterations (MAXITER), the maxi-
mum number of consecutive iterations with no improvement of
the objective function (CONITER), and tolerance (EPS). The solution
archive (SArc) is initiated using the HSS technique, which has a
dimension of ks by the number of decision variables (NDIM). The
objective function is evaluated with the solution archive. The qual-
ity of the objective, as obtained from each solution in the archive, is
used to rank them. A Gaussian function is used to determine the
weight of each solution according to their rank in the solution
archive. The termination criteria are tested in the second part of
the algorithm. If the termination criteria are not satisfied, an ant
selects one of the solutions in the solution archive probabilistically
as a solution construction guide. The solution guide is selected by
comparing the probability value of the selected solution and a ran-
dom number. If the probability value of the selected solution is
greater or equal to the random number, the solution is selected
as the solution guide to generate a new solution. All ants generate
new solutions using this solution guide. The solution construction
is accomplished in an incremental manner, variable by variable.
For each decision variable, a new solution is generated by sampling
a Gaussian Kernel generated from the mean and standard deviation
of the selected solution guide. The objective function is evaluated
from the new solution. In the next step, the new solutions are



Table 2
Summary of EACO algorithm (Diwekar and Gebreslassie, 2016; Gebreslassie and
Diwekar, 2015).

a. Start program
Set initial parameters (i.e., ks, nAnts, NC, ND, q, q) and termination

criteria
Initialize solution archive (SArc (ks, NDIM)) using HSS
Combine and evaluate the objective function of the k solutions
Rank solutions based on the quality of the objective function

(SArc = Rank(S1, . . .,Sks))
Evaluate the weight of each solution based on rank

b. While the termination criterion is not satisfied
Generate solutions equivalent to the number of ants
For all # nAnts
Incremental solution construction
For all # NDIM
s Probabilistically construct discrete decision variables
s Probabilistically construct continuous decision variables

End for # NDIM
Store and evaluate the objective function value of the newly

generated solutions
End for # nAnts

Combine, rank and select the best k solutions, SArc = Best (rank
(S1. . .Sks+nAnt),ks)

Update solution archives
End while

End program
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stored along with the solution archive from the previous steps. The
new combined solution is sorted by the quality of objective values,
and the best ks solutions are selected. This updating is similar to
the pheromone value update where the artificial ants are moving
towards the best solution possible. Finally, the solution is updated
by comparing the best solution so far, and the best solution from
the updated solution archive. The second part (b in Table 2) contin-
ues until one of the stopping criteria is satisfied.

The precursor design problem includes equality and inequality
constraints, as shown in the problem formulation. The EACO algo-
rithm used in this work implements these constraints through an
oracle penalty method introduced by Schluter et al. (Schlüter
et al., 2009). Oracle penalty method is a generalized technique that
can handle formidable constrained optimization problem that can
be difficult to implement otherwise. In this method, the objective
function is first transformed into an equality constraint and mak-
ing the original objective function inessential. In this way, mini-
mizing the original equality and inequality constraints and that
of the new constraint from the objective become comparable. A
penalty function is created by using the comparable property of
the two. In some cases, the penalty function is created by a
weighted sum of original objective function and constraints. In this
way, the penalty function balances its penalty weight between the
transformed objective function and constraint violation. This pen-
alty function becomes the new objective function. Because of its
simplicity, the oracle penalty function is used extensively. An
example of the implementation of the oracle penalty function
can be found in a study by Schluter and Gerdts (Schlüter and
Gerdts, 2010).

Optimization for interaction parameters
CAMD is used to design new materials having specific proper-

ties. In CAMD, new molecules are developed by selecting a combi-
nation of functional groups (Gani et al., 1991). In the present work,
our goal is to develop novel precursors for ALD. However, CAMD
requires the properties of the functional groups. Based on experi-
mental data from four different ALD systems (Section 3), the UNI-
FAC interaction parameters of the functional groups (abnm and
aanm), which are not found in literature, are obtained using EACO
algorithm. The values of interaction parameters are estimated by
minimizing the objective function, which is an error function
9

(Err) that estimates the difference between experimental and the-
oretical values.

In the present problem, the Err is estimated by finding the dif-
ference between GRexp and GRcalc. For each ALD system, the error
function is minimized, separately. Since the interaction parameters
are determined to be the decision variables in the model, their
accuracy is proved by the agreement of GRexp and GRcalc.

As displayed in Fig. 5, we use EACO algorithm to minimize the
sum of the errors between the GRexp and GRcalc. The expression is
shown by Eq. (51):

minErr ¼ min
XEq
1

GRcalc � GRexp
� �2h i

ð51Þ

where Eq is the number of data points used to solve the problem. In
the present work, around 8–15 data points are used for each ALD
problem depending on the saturation curve. In Eq. (51), GRcalc is
the calculated growth that can be estimated by Eq. (41).

The group interaction parameters measure the difference
between the energy of interaction of two groups, here, m and n
or two same groups, m and m (Fredenslund, 2012; Fredenslund
et al., 1977). If two groups are the same, this difference would be
zero. Moreover, the interaction parameters between the functional
groups on the adsorbent is equal to zero (Berti et al., 1999). Thus,
the interaction parameters in the ASS phase have only been consid-
ered between the adsorbate and the adsorbent. Also, the interac-
tion parameters between each group with inert gas have been
assumed to be zero as inert gas acts as the carrier gas, and it does
not react with the functional groups.

2.5. Validation of results

From the optimal values of the interaction parameters, the
growth rates have been computed theoretically (GRcalc) as given
in Eq. (41) and compared to the experimental growth rates (GRexp)
for all the four materials used in this work. The R2 values have been
calculated by Eq. (52) to further compare the calculated growth
rates to the experimental growth rates.

R2 ¼ 1�
P

Err2Pn
i¼1 GRðiÞ

exp � GRave
exp

� �2 ð52Þ

where n is the number of data points and GRave
expis the average of

experimental growth rates.

3. Case studies

As mentioned before, the case studies are conducted with four
ALD experiments that have used TDMAT, TDEAT, tetrakis (diethy-
lamino) hafnium (TDEAH), and tetrakis (ethylmethylamino) haf-
nium (TEMAH) as precursor materials. Each precursor material is
divided into functional groups and their interaction parameters
with the substrate and with each other are obtained using opti-
mization theory. Details about the experiments and the functional
groups are given below.

3.1. TDMAT

The first experimental data used in the present work, has been
obtained from a paper by Xie et al. (Xie et al., 2007). They used tet-
rakis (dimethylamido) titanium (TDMAT) as the precursor and
water vapor as the co-reactant to deposit TiO2 on silicon and argon
as the carrier gas. The TDMAT bubbler was heated to 30 �C, and the
temperature of the reactor was 50 �C. They provided thickness ver-
sus precursor pulse time, and the thickness can be related to the
growth rate by dividing thickness by the number of cycles. To



Fig. 5. Solution strategy applied for optimal interaction parameter selection using the EACO algorithm.
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apply the GCM, each TDMAT molecule (Ti(N(CH3)2)4) was divided
into three functional groups: titanium, nitrogen, and methyl
groups. The number of times the functional groups appear in a pre-
cursor molecule are: 1, 4, and 8 for titanium, nitrogen, and methyl,
respectively. Along with the precursor, argon as the carrier gas also
appears in the bulk phase. The UNIFAC interaction parameters in
the bulk and the ASS phases have been shown in Tables 3 and 4
and, respectively.

3.2. TDEAT

Selvaraj et al. (Selvaraj et al., 2013) deposited TiO2 using TDEAT
as a precursor and provided the change of growth rate by changing
Table 4
UNIFAC interaction parameters (aanm) for the ASS phase, TDEAT.

Groups Ti Si

Ti 0 aa12
Si aa21 0

Table 3
UNIFAC interaction parameters (abnm) for the bulk phase, TDMAT.

Groups Ti N CH3 Ar

Ti 0 ab12 ab13 0
N ab21 0 ab23 0
CH3 ab31 ab32 0 0
Ar 0 0 0 0

10
precursor pulse time. Si (100), used as the substrate, was cut into
2 cm � 2 cm pieces. They used nitrogen as the carrier gas and
water vapor as the co-reactant. The pressure and temperature of
the reactor were 0.5 Torr and 200 �C, respectively. The TDEAT bub-
bler temperature was kept at 65 �C, and the bubbler pressure was
10 Torr (Xu, 2013). The molecular structure of TDEAT (Ti(N(CH2-
CH3)2)4) is similar to TDMAT, and the only difference between
them is that TDEAT has eight methylene groups. Therefore, the
interaction parameters for titanium, nitrogen, and methyl group pre-
dicted from TDMAT may be used for TDEAT as well (Gonzalez et al.,
2007). Table 5 shows the interaction parameters of the functional
groups of TDEAT. As seen in Table 5, some of the required interac-
tion parameters have been calculated in the case study (1) since
some of the groups are similar to those of TDMAT (i.e., ab12, ab13,
ab21, ab23, ab31, ab32,). The indexes have not been changed since
the interaction parameters found for TDMAT can be used here.
Table 4 shows the interaction parameters between titanium and
silicon, which is applicable for this case study, as well.
3.3. TDEAH

The third precursor studied in this work is TDEAH. The growth
rate vs. precursor pulse time was provided by Deshpande et al.
(Deshpande et al., 2004) that deposited HfO2 on silicon using
TDEAH precursor and water vapor as the co-reactant. Their carrier
gas was argon, and the substrates were cut into 2.5 cm � 2.5 cm.
The reactor temperature and pressure have been reported as
300 �C, and 0.5 Torr, respectively, and the bubbler temperature
was 70 �C (Kragh et al., 2008). If the molecular structure of TDEAH
(Hf(N(CH2CH3)2)4) is compared with TDEAT, it can be easily seen
that the only atom, which is different, is hafnium. Most of the



Table 5
UNIFAC interaction parameters (abnm) for the bulk phase, TDEAT.

Groups Ti N CH3 CH2 N2

Ti 0 ab12 ab13 ab14 0
N ab21 0 ab23 ab24 0
CH3 ab31 ab32 0 ab34 0
CH2 ab41 ab42 ab43 0 0
N2 0 0 0 0 0
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interaction parameters are common with the ones that were com-
puted for TDEAT and are used here.

The interaction parameters for TDEAH are shown in Tables 6
and 7 for the bulk and the ASS phases, respectively. The indexes
contain zero to be differentiated from the ones for previous precur-
sors. There is a total of six unknown values in the bulk phase (i.e.,
ab02, ab03, ab04, ab20, ab30, ab40) and two in the ASS phase (i.e., aa02,
aa20) that are unique in TDEAH and are necessary to be found using
optimization.

3.4. TEMAH

The last precursor studied here is TEMAH. Liu et al. (Liu et al.,
2005) used TEMAH as the precursor to deposit HfO2 on silicon,
and the saturation curve of growth rate versus precursor pulse
time has been provided in their paper. The bubbler and reactor
temperature were 80 �C and 250 �C, respectively, and the reactor
pressure was 0.5 Torr. Using the Antoine constants, one is able to
find the vapor pressure of TEMAH (Rushworth et al., 2005). The
functional groups of TEMAH are similar to TDEAH, and its molecu-
lar structure is Hf(N(CH3(C2H5))4. The only difference between
TEMAH and TDEAH is the number of methylene groups. To study
this precursor, we were able to use the UNIFAC interaction param-
eters, which are found for TDEAH and the only change was the
number of times the methylene groups are appearing in the
precursor.

4. Results and discussions

4.1. Estimation of interaction parameters with GCM by minimizing the
error

The interaction parameter optimization problem is solved using
the EACO algorithm as given in Gebreslassie and Diwekar
(Gebreslassie and Diwekar, 2015). The algorithm terminates if it
reaches the maximum number of iterations (MAXITER = 3000), or
if the tolerance (EPS = 1E-6), which is the relative difference
Table 6
UNIFAC interaction parameters (abnm) for the bulk phase, TDEAH.

Groups Hf N CH3 CH2 Ar

Hf 0 ab02 ab03 ab04 0
N ab20 0 ab23 ab24 0
CH3 ab30 ab32 0 ab34 0
CH2 ab40 ab42 ab43 0 0
Ar 0 0 0 0 0

Table 7
UNIFAC interaction parameters (aanm) for the ASS phase, TDEAH.

Groups Hf Si

Hf 0 aa02
Si aa20 0

11
between the solutions found in two consecutive iterations, is lower
than or equal to the parameter EPS for a set of a consecutive num-
ber of iterations (CONITER = 200). The parameters used in the EACO
algorithm are the solution archive size Ks = 50, number of ants
nAnts = 10, q = 1E-5, and pheromone evaporation parameter
q = 0.85. The main results are given below.

The different structural and functional groups from TDEAT,
TDMAT, TDEAH, and TEMAH have been identified. Table 8 gives
the functional groups and their van der Waals volume (m3), (Rg)
and surface area (m2), (Qg) values. Appendix A in Supplementary
Information shows how these values are calculated.

The resulting optimal interaction parameters for each precursor
and between all the functional groups in the bulk phase and the
ASS phase are shown in Tables 9 and 10. As mentioned before,
the interaction parameters have been computed using the GCM
for four different precursors: TDEAT, TDMAT, TDEAH, and TEMAH.
The objective function value ranges from 10-6-10-3.

The isotherms of theoretical and experimental growth rates
versus precursor pulse times are shown in Figs. 6–9 for TDMAT,
TDEAT, TDEAH, and TEMAH, respectively. For TDMAT and TDEAT,
since there were not enough data points before saturation, we
interpolated the experimental points. The R2 values for each mate-
rial are also presented. It has been found that the R2 value for
TDMAT, the first compound, is 0.85. The quality of fit increased
for the rest of the compounds, where the interaction parameters
for some of the groups obtained from other precursor materials
are used. For example, the functional groups of precursors TDMAT
are Ti, N and CH3, whereas that of TDEAT is Ti, N, CH2, and CH3.
Thus, the interaction parameters of Ti, N, and CH3 with each other
obtained from the simulation of growth rate from TDMAT is used
for TDEAT. The R2 value for TDEAT is 0.99, suggesting the useful-
ness of using properties of the functional group estimated from
one system to another.

The R2 value for TDEAH and TEMAH is 0.93. TDEAH uses inter-
action parameters between N, CH2, and CH3 estimated from simu-
lating growth rate from both TDMAT and TDEAT. In fact, all the
interaction parameters used for the growth rates for TEMAH are
calculated using the interaction parameters obtained from TDMAT,
TDEAT, and TDEAH without conducting any simulation. Low error
functions and R2 values close to one indicate that the values of
GRcalc are close to GRexp, which displays a good agreement between
estimated values of growth rates and experimental data. The use of
group interaction parameters calculated from one precursor for
other precursors for predicting thermodynamically complex phe-
nomena like growth rate shows that the group contribution
method is useful for property estimation of any material having
the same functional group.

4.2. Results from the design of ALD titanium precursors using CAMD

The new precursors are created with three functional groups (N,
CH2, CH3) coming from two different precursors, TDMAT and
TDEAT. As mentioned in Section 2, the goal was to find the optimal
combination of the functional groups that will maximize the
Table 8
Van der Waals volume (Rg) and surface area (Qg) of each functional group.

Group Rg (m3) Qg (m2)

Si 1.1622 0.3351
Ti 1.6528 0.3498
Hf 1.496 0.3274
N 0.6193 0.1818
CH3 0.9011 0.848
CH2 0.6744 0.54
N2 0.6812 0.1936
Ar 1.105 0.2675



Table 10
Calculated UNIFAC interaction parameters in the ASS phase.

Groups Ti Hf Si

Ti 0 N/A �178.61
Hf N/A 0 10757.12
Si 6428.9 11276.49 0

Table 9
Calculated UNIFAC interaction parameters in the bulk phase.

Groups Ti Hf N CH3 CH2 N2 Ar

Ti 0 N/A �613.9 2030.8 �968.9 0 0
Hf N/A 0 6239.30 3859.6 �1177.39 0 0
N �3181.5 4308.12 0 �1.96e05 15169.17 0 0
CH3 �5772.7 3307.80 3562.9 0 16648.73 0 0
CH2 �10044.1 �9864.72 18222.55 4884.35 0 0 0
N2 0 0 0 0 0 0 0
Ar 0 0 0 0 0 0 0
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growth rate given in Eq. (41). There were three discrete and two
continuous variables used in EACO of the precursor design prob-
lem. The discrete variables are the number of times each functional
group (i.e., N, CH2, CH3) may appear in the newly designed precur-
sor, and the continuous variables refer to the moles of titanium
that will be retained in the bulk phase after equilibrium as well
as deposition temperature. Since the configuration of the designed
molecule that dictates the amount adsorbed is not known a priori,
we have used the number of moles remained in the bulk phase
after ALD as a decision variable instead of the initial number of
moles. For the initial number of moles, a fixed value of precursor
per liter of the inlet feed (0.00039 mol of precursor*pulse time/
Liter) is used for our analysis. All calculations are performed on a
substrate weight of 0.65 g. At each iteration, we started with the
given number of initial moles. From the number of moles adsorbed
at equilibrium, we select a subset of functional groups and temper-
ature and ensure that the thermodynamic equilibrium of adsorp-
tion process (Eq. (48)) is satisfied within a tolerance. Each of the
three functional groups is allowed to appear up to a maximum of
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20 times. The search space is composed of 8000 (i.e., 203) possible
combinations. With temperature as a continuous decision variable,
the search space increases exponentially. The algorithm is shown
in Table 2. It terminates if it reaches the maximum number of iter-
ations (MAXITR = 3000), or if the tolerance (EPS = 1E-10), that is, the
difference between solutions in two consecutive iterations is less
than or equals to EPS or equals to EPS for a consecutive number
of iterations (CONITER = 50). The parameters used for the EACO
algorithm are solution archive size (Ks = 50), number of ants
(nAnts = 200), pheromone evaporation (q ¼ 0:85Þ, algorithm
parameter (q ¼ 1e� 3Þ, and Oracle (X ¼ 1e� 2Þ.

Through CAMD, the algorithm generated 41 unique optimal
combinations. The structural integrity of the designed precursor
is confirmed by controlling the net valency in the molecule. The
parameters used for this simulation are the maximum number of
times each functional group can be present in the optimally
designed precursor, as well as the deposition temperature. From
the Forty-one unique molecules, we present the top 10 here
(Table 11), and they are ranked based on the maximum growth
rate. Besides the growth rate, the penalty function, the optimized
deposition temperature corresponding to each molecule, molecu-
lar formula, and a suggested structure of the designed precursors
are shown in Table 11. The highest growth rate (1.65 Å/cycle) is
obtained for a molecule with 1 Ti atom, 8 N, 20 CH2, and 20 CH3

groups at a deposition temperature of 327 �C. Since the
precursors are in the gas phase, the predicted structures can
be the combination of molecules. For instance, in the case of
6 8 10 12
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TiN8(CH2)20(CH3)20, the combination of TDEAT and [N(Et)3]4 would
be the proposed structure, which results in higher growth rate
than TDEAT.

The designed precursor molecules are compared to some of the
existing precursors. Some of the commonly used precursors to
deposit TiO2 by ALD are as following:

� TDMAT;
� TDEAT;
� Tetrakis(ethylmethylamino)titanium(IV) (TEMAT);
� Titanium(IV) isopropoxide (TTIP);
� Titanium tetrachloride (TiCl4).
13
The properties of the above-mentioned precursors, along with
some examples of less common titanium precursors, are summa-
rized in Table 12, and some example references have been cited.
Some precursors can be used along with both O3 and water vapor
as the oxygen source (Katamreddy et al., 2008). The precursor sat-
uration dose is different depending on which oxygen source is
used, and it may result in different growth rates as well (Kim
and Kim, 2012). The precursor saturation dose and the growth rate
for both oxygen sources are included in Table 12, where the first
number in each column is related to the first oxygen source, and
the second number separated by a comma is related to the second
oxygen source. Katamreddy et al. (Katamreddy et al., 2009) have
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Table 11
The properties of optimal precursor materials designed for ALD.

Rank Growth rate (Å/cyc) Penalty function Deposition temperature (�C) Molecular formula Suggested structure

1 1.6522 �0.175 327 TiN8(CH2)20(CH3)20 TDEAT + [N(Et)3]4
2 1.6395 �0.174 327 TiN8(CH2)16(CH3)20 TDEAT + [NMe(Et)2]4
3 1.6244 �0.172 327 TiN6(CH2)20(CH3)14 TDEAT + [N(Pr)3]2
4 1.6090 �0.171 327 TiN5(CH2)20(CH3)11 TDEAT + N(Pe)3
5 1.5922 �0.169 327 TiN4(CH2)20(CH3)8 [(PrBu)N]4Ti
6 1.5880 �0.169 327 TiN4(CH2)19(CH3)8 [(PrBu)N]3Ti[(Pr)2N]
7 1.5314 �0.163 327 TiN2(CH2)16(CH3)2 [N(CH2)5]2Ti[Bu]2
8 1.3932 �0.149 27 TiN8(CH2)20(CH3)20 TDEAT + [N(Et)3]4
9 1.3900 �0.149 27 TiN8(CH2)19(CH3)20 TDEAT + NMe(Et)2 + [N(Et)3]3
10 1.3893 �0.149 37 TiN8(CH2)20(CH3)20 TDEAT + [N(Et)3]4

Table 12
Properties of existing precursor molecules for TiO2 ALD/atomic layer epitaxy.

Precursor Common oxygen
source

Precursor saturation
dose (s)

Temperature
window (�C)

Growth rate
(Å/cycle)

Reference

TDMAT H2O, O3 0.15–10, 0.5–5 50–330 0.33–1.20, 0.40–0.65 (Abendroth et al., 2013; Jin et al., 2015;
Katamreddy et al., 2008; Kim and Kim, 2012;
Shahmohammadi et al., 2020a; Xie et al., 2007)

TDEAT H2O, O3 5, 5 125–250 0.25, 0.40 (Katamreddy et al., 2008)
TEMAT H2O, O3 5, 10 125–225 0.40, 0.55 (Katamreddy et al., 2008)
TTIP H2O 0.04/ 0.6* 280–290 0.02/ 0.30* (Aarik et al., 2000; Avril et al., 2014; Mikko

Ritala et al., 1994)
TiCl4 H2O, O3 0.5, 5 Up to 600 0.40–0.75 (Aarik et al., 2013; Hwang, 2014; Leem et al.,

2014; Ritala et al., 1993)
Ti(OiPr)2(tmhd**)2 O3, H2O 2, 2 370–400 0.20, 0.43 (Hwang, 2014; Lee et al., 2011)
Ti(OEt)4 H2O 1.5 250–325 0.40 (Mikko Ritala et al., 1994)
Ti(OMe)4 H2O 0.6 250–300 0.50 (Pore et al., 2004)
Ti(OtBu)4 H2O 2 150–200 0.25 (Weon Hwang et al., 2007)
PrimeTi O3 4 250–325 0.27 (Katamreddy et al., 2009)
StarTi O3 5 150–400 0.30 (Katamreddy et al., 2009)
TyALD O3 7 225–275 0.40 (Katamreddy et al., 2009)
StarTyALD O3 7 250–350 0.30 (Katamreddy et al., 2009)

* The saturation dose and growth rate for this precursor was different in two different references mentioned.
** tmhd = 2,2,6,6-tetramethyl-3,5-heptanedione.
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studied the properties of some non-common Ti precursors for ALD,
which are included in Table 12 (i.e., PrimeTi, StarTi, TyALD, and
StarTyALD).

As can be seen in Table 12, the existing precursors have some
limitations. For instance, some of them result in a low growth rate,
need a rather high pulse time to saturate the surface, have a lim-
ited temperature window, or are only functional at high tempera-
tures. The only precursors that result in rather high growth rates in
some ALD conditions are TDMAT (Xie et al., 2007), TiCl4 (Leem
et al., 2014), TEMAT (Katamreddy et al., 2008), and Ti(OMe)4
(Pore et al., 2004). The reported growth rate from these precursors
are higher than 0.50 Å/cycle in some conditions but still much
lower than the predicted growth rates from the newly designed
precursors in this work.

Among the precursors with growth rates higher than 0.50 Å/cy-
cle, although TDMAT would result in a high growth rate in some
deposition conditions (Xie et al., 2007), the growth rate from this
precursor strongly depends on the deposition temperature. The
highest growth rate from TDMAT (i.e.,1.20 Å/cycle) has been
reported in the deposition temperature of 50 �C, where the co-
reactant was water (Xie et al., 2007). Besides, TiCl4 results in a
rather high growth rate (0.75 Å/cycle) at 300 �C when it reacts with
water (Leem et al., 2014). However, the byproducts of TiCl4 are cor-
rosive (Hwang, 2014), which is not desirable, and it is better to be
substituted. TEMAT is reported to have a growth rate of 0.55 Å/cy-
cle in reaction with O3, but it needs a high saturation pulse time
(10 s) (Katamreddy et al., 2008), which leads to long process time.
The growth rate from Ti(OMe)4 (0.50 Å/cycle) is comparable with
that of TEMAT with a much lower saturation time (0.6 s). However,
Ti(OMe)4 is only functional in high temperatures (250–300 �C)
(Pore et al., 2004). The high temperatures are not desired in many
cases such as when the substrate is organic (Shahmohammadi
et al., 2020b, 2020a). Hence, there is still the need for a precursor,
which would result in a high growth rate at low temperatures with
not so long saturation dose. As can be seen in Table 11, three of the
designed precursors result in high growth rates (1.39 Å/cycle) at
temperatures as low as room temperature (Ranks 8–10). It is worth
mentioning that the lowest predicted growth rate from theoreti-
cally designed precursors in this work is 1.23 Å/cycle at 67 �C (rank
41), which is still higher than, although close to, the highest
reported value from the existing precursors (i.e., 1.20 Å/cycle). In
the future, these precursors will be synthesized and tested exper-
imentally, and a more detailed property study will be performed.
5. Conclusion

In this study, we have developed a technology for the design of
novel precursor materials with enhanced properties for ALD. An
ALD precursor material comprises functional groups and the struc-
tural and functional properties of the precursor depend on those
groups. In the first part of this paper, four precursors, i.e., TDMAT,
TDEAT, TDEAH, and TDMAH, which are commonly used in ALD, are
divided into functional groups, and the proposed GCM is applied to
obtain their interaction parameters with the substrate and with
each other. Using experimental data of the ALD growth rate and
the EACO technique, the UNIFAC interaction parameters for the
groups are computed. The interaction parameters are used for
the theoretical estimation of the growth rate at different precursor
pulse times. The estimated values are found to be in good agree-
ment with experimental results. Group interaction parameters cal-
culated from one precursor used for predicting accurate growth
rate from other precursors shows the usefulness of the proposed
theory. In the second part of this paper, the CAMD framework
was used to design ALD precursors that predicted an improved
growth rate of ALD using the properties of the functional groups
15
that have been developed by the GCM. The optimal design of novel
precursors has been achieved by solving an MINLP problem. The
MINLP problem was successfully solved using EACO algorithm.
The CAMD algorithm for precursor design maximized the growth
rate of the deposited material subjected to structural feasibility,
thermodynamic correlation, as well as process conditions and
other constraints. The proposed methodology was tested success-
fully for the design of precursors for ALD of titanium on a silicon
substrate. Forty-one unique precursors were designed, and ten pre-
cursor molecules were selected based on the predicted growth rate
values. These molecules are possibly the best candidates that can
be used in an ALD process. All of the designed molecules result
in a higher growth rate compared to existing precursors, while sat-
isfying the operating conditions, with the best possible designed
precursor predicted a 40% higher growth rate than the known
one. This method can be applied for the design of ALD precursors
of any metals and metal oxides. Once a comprehensive database
of UNIFAC interaction parameters in bulk and the ASS phases is
obtained, the optimal design of novel precursor materials will
become possible on a large scale. A cost analysis is beyond the
scope of this paper.
CRediT authorship contribution statement

Mina Shahmohammadi: Validation, Investigation, Writing -
original draft. Rajib Mukherjee: Software, Validation, Investiga-
tion, Writing - original draft. Christos G. Takoudis: Methodology,
Investigation, Writing - review & editing, Supervision, Project
administration, Funding acquisition. Urmila M. Diwekar: Concep-
tualization, Methodology, Software, Investigation, Writing - review
& editing, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Appendix A. Van der Waals volume (Rg) and surface area (Qg).

To represent the group size and surface areas, Rg and Qg can be cal-
culated using van derWaals group volume, Vg, and surface areas Ag
as it can be seen in Eqs. (A1) and (A2):

Rg ¼ Vg=15:17 ðA1Þ

Qg ¼ Ag=2:5e9 ðA2Þ
where Vg and Ag are calculated using experimental van der Waals
radius (rw) of each atom (Bondi, 1964; Vogt and Alvarez, 2014)
(Eq. (A3)).

Vg ¼ 4
3
pr3wNA ðA3Þ

For the surface area value, Eq. (A4) is used:

Ag ¼ pr2wNA ðA4Þ
Titanium (Ti). In case of Titanium, rw ¼ 2:15Å which is equiva-

lent to 2.15e � 8 cm, and NA, the Avogadro number, equals to
6.022e23 moles/molecule. Then, Vg ¼ 25:06cm3=mole and
Ag ¼ 8:7e8cm2=mole. Substituting the values of Vg and Ag into
Eqs. (A1) and (A2), respectively, Rg ¼ 1:652 and Qg ¼ 0:349 are
obtained.

Hafnium (Hf). For Hafnium, rw ¼ 2:1Å which is equivalent to
2.1e � 8 cm. That results in Vg ¼ 23:36cm3=mole and
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Ag ¼ 8:34e8cm2=mole, Rg ¼ 1:496, and Qg ¼ 0:327. Table 8 shows
the Rg and Qg values of all the groups used in this work.
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