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Abstract

Optimal control problems involve the difficult task of determining time-varying profiles through dynamic optimization. Such problems
become even more complex in practical situations where handling time dependent uncertainties becomes an important issue. Approaches tc
stochastic optimal control problems have been reported in the finance literature and are based on real option theory, combining Ito’s Lemma
and the dynamic programming formulation. This paper describes a new approach to stochastic optimal control problems in which the stochastic
dynamic programming formulation is converted into a stochastic maximum principle formulation. An application of such method has been
reported by Rico-Ramirez et alCémputers and Chemical Engineering, 2003, 27, )&&if no details of the derivation were provided. The
main significance of this approach is that the solution to the partial differential equations involved in the dynamic programming formulation
is avoided. The classical isoperimetric problem illustrates this approach.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction Calculus of variations considers the entire path of the func-
tion and optimizes the integral through the minimization of

Optimal control problems in engineering have received the functional by vanishing the first derivative, resulting in
considerable attention in the literature. In general, solution second-order differential equations that can be difficult to

to these problems involves finding the time-dependent pro- solve. Other two approaches keep the first-order differential
files of the control variables so as to optimize a particular system by using transformation.

performance index. The dynamic nature of the decision vari-  |n the maximum principle, the objective function is re-
ables makes these problems much more difficult to solve formulated as a linear function in terms of final values of
compared to normal optimization where the decision vari- state variables and the values of a vector of constants (linear
ables are scalar. In general mathematical methods to SO|VQ\/|ayer form)_ However, this maximum princip|e transforma-
these problems involve calculus of variations, the maximum tion needs to include additional variables and corresponding
principle and the dynamic programming technique. Nonlin- first-order differential equations, referred to as adjoint vari-
ear programming (NLP) techniques can also be used to solveaples and adjoint equations, respectively.
this problem provided the system of differential equations  Dynamic programming formulation results in a first-
is converted to nonlinear algebraic equations. For details of order System of partia| differential equations (the Hamilton—
these methods, please see the work by Diwekar (2003).  Jacobi-Bellman, HIJB equations) that may not be easy to
solve. However, this dynamic programming method provides
* Corresponding author. Tel.; +1 312 3553277; fax: +1 312 9965921.  the basis for stochastic optimal control problems and is used
E-mail addressurmila@uic.edu (Urmila M. Diwekar). in this paper to derive the stochastic maximum principle.
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2. The stochastic maximum principle oL odLd
P P 0=maxg[k+§+a—d—ﬂ (1)
X
Although the mathematics of dynamic programming looks . _ _
different from the maximum principle formulation, in most  Eq. (1) is the HIB equation and can be rewritten as
cases they lead to the same results. As a matter of fact,; _ max[k + L; + L, f] )

in this section we first show that, starting from the dy-

namic programming optimality conditions (HJB equations), 0 = max[L, + H]
the derivation of the adjoint equations of the maximum prin-
ciple can be achieved. This is not surprising and has been
reported elsewhere (see for instance (Diwekar, 1995, 2003))
for the deterministic case. Financial literature reports anex- H =k + Ly f 3)
tension of the HJB equation for the stochastic case (Dixit &
Pyndick, 1994; Merton & Samuelson, 1990; Thompson &
Sethi, 1994) but an equivalent maximum principle is not re-
ported. In this paper, we use the mathematical equivalence
between dynamic programming and the maximum principle I I kL 4
to extend the maximum principle to the stochastic case. Re- " + Laf = —he = felx 4)
cently, we presented an application of this method (Diwekar, and using chain rule:

1995; Rico-Ramirez, Morel, & Diwekar, 2003) but no de-

tails of the derivation were provided. Those references also dL,  dL, 0Ly dx

whereH is the Hamiltonian function defined by

Taking derivative of Eq. (2) with respect fo

Ly +ky + Lxxf + fox =0

the present advantages of the maximum principle. dr = ot ax df

The main aspect of the derivations consists on obtaining
the expressions for thedjoint equationsThe adjoint equa- di, Lu+Lof )
tions provide the dynamics of thedjoint variablesin the d— T

maximum principle. For the deterministic case, it is shown gypstituting (4) in (5):
that the adjoint variables in the maximum principle are equiv-

alent to the derivatives of the objective function with respect dL; = —ky — fiLy (6)
to the state variables of the dynamic programming approach. dr

It is possible to show such an equivalence for the stochasticFinally, if we consider that, for the case of the maximum
case also and that provides the basis of our reformulation. principle formulation, the problem is represented in linear

In the remaining of this section, we provide the steps Mayer form, therk = 0 and Egs. (3) and (6) become:
involved in the derivation of the adjoint equations used in

the maximum principle approach to the solution of stochas- H = Ly f (7)
tic optimal control problems. This derivation is achieved by dL,
using the optimality conditions established for the dynamic ——~ = — fxLx (8)

programming approach. First, the deterministic case will be -~ ) ]

considered and then an analogous analysis for the stochastieWriting Egs. (7) and (8) in terms of variables,whereu
problem will be described. Notice that, seeking simplicity, the '€ €quivalent to the derivatives of the objective function
derivations correspond to a case where just one state variableVith respectto the state variables dynamic programming,
x, is present in the formulation (no vectorial representation is "eSultsin following adjoint equations for maximum principle:

used); nevertheless, the interpretation of the derivation can bedy,

extended to the situation ebeing a vector of state variables. 5, — —fn )
2.1. Deterministic case and, forn-dimensional vectors:
Consider the definition of an optimal control problem: % _ 2”: " %
dr P J 0x;

T
mang:/ k(x, 6) dt
0 2.2. Stochastic case

Subject to: Once again, we will use a scalar representation although
dx the extension to vectorial analysis can be made. Consider the
i fx,0)=f stochastic optimal control problem given by

t

T
and the dynamic programming optimality conditions given max,7, = E |:/ k(x, 6) dt]
by 0
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whereE is the expectation operator.
Subject to an Ito process (Diwekar, 1995):

dx = fdr + gdz

where @ is a stochastic Wiener process, draahdg are both

given functions.

(10)

The corresponding optimality conditions are now:

0=maxy [k + éE(dL)}

and the corresponding HJB equation becomes:

L oL 1, 0L
O=max |k+ — + — f+ g% ——
axg[ o TS T8 (ax)Z]

1
= Mmaxy |:k + L+ fo + EgzLxx:|

The Hamiltonian functiontd, for the stochastic case is given

below:

H=k+L,f+ %gzLxx

Note the second-order term coming from the consideration
of the state variable being an Ito process (Ito’s Lemma). We

(11)

Finally, if the problem is stated in Mayer linear forin= 0,
and then:

dL,
dr

Eqg. (15) provides the expression for the dynamics of the ad-
jointvariablesinthe stochastic case. By comparing Egs. (15)—
(8), one can observe the second-order term included in
Eqg. (15) as a result of the state variable being a stochastic
variable behaving as an Ito process.

1
=—fxLx — é(gz)xl‘xx (19)

2.2.1. Representing second derivatives contributions
using adjoint equations

The use of Eq. (15) implies that the calculationZgf; is
also needed. In order to obtain an expression for the dynamics
of L,,, a derivation similar to the one presented in the previ-
ous subsection must be used. The resulting equation will also
be named as adjoint equation. Let us start by deriving again
Eq. (12) with respect t&:

Lxxl + kxx + Lxxfx + L.xxxf + L.Xxfx + foxx
+ %gzLxxxx + :_Zl(gz)xLxxx + :_Zl(gz)xLxxx
+3(¢%)xrLe = 0 (16)

and, therefore,

then follow the same procedure as in the deterministic case. Ly, + Ly f + %gzLxxxx = —kyy — 2Ly  fx — Ly frxx

Taking derivative of Eq. (11) with respectxo

Lyt + ke + Lx f + fxLx + %gzLxxx + %(gz)xLxx =0

and, therefore,

Ly + Ly f + %gzLxxx = —ky — fuxlx — %(gz)xl‘xx

Also, using chain rule and considering second-order contri-
butions of the derivatives with respect xo(Ito’s Lemma)

results in:
L, AL, dx 18°Ly , ,
dL, = dr —dr + = d
= Ot S WY 2™

Since, because of Ito’s Lemma[d(x2)] = g2 dr, the previ-

ous equation reduces to:

diL, 9L, dL,dx 1L, ,
dr o | ox dr T 2(@n2°

dL,
dr

Substituting (13) in (14):

=Ly+Luf+ %Lxxxgz

dr,
dr

1
= _kx - fox - E(gz)xLxx

12)

(13)

(14)

- (gz)xLxxx - %(gz)xxLxx a7

Using chain rule and considering second-order contributions
in the derivatives with respect to(Ito’s Lemma):

9L .y 9L, dx 102L,,

AL, = —dr —dr dx? 18
o= Ot w2 e (18)
By using Ito's Lemma:
dLyc 0Ly | OLycdx | 10%Lyy 5
dr o | ox dr 2 (x)2°
dL 1
d;x =Ly + Ly [+ éLxxxxgz (19)
Substituting Eq. (17) in Eq. (19):
dL .,

dr = _kxx - 2Lxxfx - foxx - (gz)xLxxx

1
- é(gz)xxLxx
Finally, if K = 0 and we neglect contribution of third order
(assumption also consistent with Ito’'s Lemma):

dL

1
— = _2Lxx x — Lyfax— 2 2 x Lxx 20
= fo= Lufu = 5 (20)

Equating adjoint variabley, to the first derivatives of the ob-
jective functionL with respect to the state variableandw as
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the second derivatives of the objective function with respect Subject to differential equations feg, x>, andxsz. As in Ex-
to the state variables, Egs. (15) and (20) can be rewritten as ample 7.5 in Ref. Diwekar (2003), assume that the vertical

du 2

o —fxrt — _(g )x@® (21)
d

d—(;) = —wax — ,bfox - E(gz)xxw (22)

2.2.2. A summary for the stochastic case
Summarizing the results for the stochastic case, the Hamil-

tonian function and the adjoint equations to be solved in the dr

stochastic maximum principle formulation ake= 0):

1,
H=uf+§gw

d

dl; —fxmt — _(gz)xa) w(T) =c

dow 1, _
dl = _wax Wfxx — E(g )xxa) w(T) =

Notice that the resulting problem is a two-point boundary
value problem. However, it is possible to circumvent the two
pointboundary value problem as explained in Diwekar (1995,
1992).

3. The isoperimetric problem

We consider here the historic isoperimetric problem of
Queen Dido (Diwekar, 2003). Queen Dido’s (1000 BC) prob-

lem was to find maximum area that can be covered by a ropeémax,,

(curve) whose length (perimeter) is fixed (Using kinemat-
ics this problem can be written as follows:

T
maximizg,]:/ x1(r)dt area
0

subject to

dx; =u,dr x1(0)=0.0 kinematic constraint
dxo

o =/1+u? x2(0)=0.0x2(T) =i =160

perimeter constraint

We define a new state variable in order to obtain the linear
Mayer form of the objective function:

x3(t) = fo x1(¢) dt

And the problem can then be written as

max,, L = x3(T) (23)

displacement variable; is stochastic and follows a Brow-
nian motion (instance of an Ito process). This results in the
following differential equations:

dx1 = u,dt + odz x1(0) = (24)
where ¢ = /dr ando = 0.5
d

2 _ J1+u? xp(0)=00xxT)=2=160  (25)
d
< =x() x(0)=00 (26)
The optimality conditions for this problem are
0= mavy [k 4 2% 4 2L, 1 282L

= maX o ox- & 2]’

JL oL oL oL
0=ma 1+u?2—— f
g T 05

+02 92L
2 ox1(t)?

)

max,, [Lt 4 Lyyuty 4 Ly /1 + u? + Lyxa(2)
Lx1x102 _0
2

Expressing in terms of the adjoint variables results in

2
wo
|:Lt + pauy + poy/ 1+ utz + p3x1(f) + T] =0

+

(27)

The adjoint equations are, therefore:

d
%=—1=>M1=—t+01 (28)
duz

dr

dus —0

o p3(l)=1=pz=1 (30)
dw

5 =0 @N=0=0=0 (31)

Finally, maximizing Eq. (27) with respect ig leads to:

Uy

J1+u?

Therefore, the velocity parameter follows the path given
by

w1+ pu2 =0 (32)

t—c1

_— 33
c2— (1 —c1)? ¢

Ur =
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6 lution to partial differential equations resulting from stochas-
o gz;ﬁ:;"mlc tic dynamic programming. The usefulness of this approach

for batch and bio processing to handle time dependent ther-
modynamic uncertainties inherent in such processes has re-
cently been illustrated in Rico-Ramirez et al. (2003) and in
Ulas and Diwekar (2004). This approach has a great potential
to solve problems in various areas such as ecosystem dynam-
ics (Duggempudi & Diwekar, 2003), financial modeling, and
economics.
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