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Short note

Stochastic maximum principle for optimal control under uncertainty
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Abstract

Optimal control problems involve the difficult task of determining time-varying profiles through dynamic optimization. Such problems
become even more complex in practical situations where handling time dependent uncertainties becomes an important issue. Approaches to
stochastic optimal control problems have been reported in the finance literature and are based on real option theory, combining Ito’s Lemma
and the dynamic programming formulation. This paper describes a new approach to stochastic optimal control problems in which the stochastic
d has been
r he
m rmulation
i
©

P

K

1

c
t
fi
p
a
c
a
t
p
e
t
i
t

unc-
of
in

lt to
ntial

re-
of

linear
a-
ding
ari-

st-
on–
y to
ides
used
.

0
d

ynamic programming formulation is converted into a stochastic maximum principle formulation. An application of such method
eported by Rico-Ramirez et al. (Computers and Chemical Engineering, 2003, 27, 1867) but no details of the derivation were provided. T
ain significance of this approach is that the solution to the partial differential equations involved in the dynamic programming fo

s avoided. The classical isoperimetric problem illustrates this approach.
2004 Elsevier Ltd. All rights reserved.
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. Introduction

Optimal control problems in engineering have received
onsiderable attention in the literature. In general, solution
o these problems involves finding the time-dependent pro-
les of the control variables so as to optimize a particular
erformance index. The dynamic nature of the decision vari-
bles makes these problems much more difficult to solve
ompared to normal optimization where the decision vari-
bles are scalar. In general mathematical methods to solve

hese problems involve calculus of variations, the maximum
rinciple and the dynamic programming technique. Nonlin-
ar programming (NLP) techniques can also be used to solve

his problem provided the system of differential equations
s converted to nonlinear algebraic equations. For details of
hese methods, please see the work by Diwekar (2003).

∗ Corresponding author. Tel.: +1 312 3553277; fax: +1 312 9965921.
E-mail address:urmila@uic.edu (Urmila M. Diwekar).

Calculus of variations considers the entire path of the f
tion and optimizes the integral through the minimization
the functional by vanishing the first derivative, resulting
second-order differential equations that can be difficu
solve. Other two approaches keep the first-order differe
system by using transformation.

In the maximum principle, the objective function is
formulated as a linear function in terms of final values
state variables and the values of a vector of constants (
Mayer form). However, this maximum principle transform
tion needs to include additional variables and correspon
first-order differential equations, referred to as adjoint v
ables and adjoint equations, respectively.

Dynamic programming formulation results in a fir
order system of partial differential equations (the Hamilt
Jacobi–Bellman, HJB equations) that may not be eas
solve. However, this dynamic programming method prov
the basis for stochastic optimal control problems and is
in this paper to derive the stochastic maximum principle

098-1354/$ – see front matter © 2004 Elsevier Ltd. All rights reserved.
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2. The stochastic maximum principle

Although the mathematics of dynamic programming looks
different from the maximum principle formulation, in most
cases they lead to the same results. As a matter of fact,
in this section we first show that, starting from the dy-
namic programming optimality conditions (HJB equations),
the derivation of the adjoint equations of the maximum prin-
ciple can be achieved. This is not surprising and has been
reported elsewhere (see for instance (Diwekar, 1995, 2003))
for the deterministic case. Financial literature reports an ex-
tension of the HJB equation for the stochastic case (Dixit &
Pyndick, 1994; Merton & Samuelson, 1990; Thompson &
Sethi, 1994) but an equivalent maximum principle is not re-
ported. In this paper, we use the mathematical equivalence
between dynamic programming and the maximum principle
to extend the maximum principle to the stochastic case. Re-
cently, we presented an application of this method (Diwekar,
1995; Rico-Ramirez, Morel, & Diwekar, 2003) but no de-
tails of the derivation were provided. Those references also
the present advantages of the maximum principle.

The main aspect of the derivations consists on obtaining
the expressions for theadjoint equations. The adjoint equa-
tions provide the dynamics of theadjoint variablesin the
maximum principle. For the deterministic case, it is shown
that the adjoint variables in the maximum principle are equiv-
a pect
t ach.
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0 = maxθ

[
k + ∂L

∂t
+ ∂L

∂x

dx

dt

]
(1)

Eq. (1) is the HJB equation and can be rewritten as

0 = maxθ[k + Lt + Lxf ] (2)

0 = maxθ[Lt + H ]

whereH is the Hamiltonian function defined by

H = k + Lxf (3)

Taking derivative of Eq. (2) with respect tox:

Lxt + kx + Lxxf + fxLx = 0

Lxt + Lxxf = −kx − fxLx (4)

and using chain rule:

dLx

dt
= ∂Lx

∂t
+ ∂Lx

∂x

dx

dt

dLx

dt
= Lxt + Lxxf (5)

Substituting (4) in (5):
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lent to the derivatives of the objective function with res
o the state variables of the dynamic programming appro
t is possible to show such an equivalence for the stoch
ase also and that provides the basis of our reformulati

In the remaining of this section, we provide the st
nvolved in the derivation of the adjoint equations use
he maximum principle approach to the solution of stoc
ic optimal control problems. This derivation is achieved
sing the optimality conditions established for the dyna
rogramming approach. First, the deterministic case w
onsidered and then an analogous analysis for the stoc
roblem will be described. Notice that, seeking simplicity,
erivations correspond to a case where just one state va
, is present in the formulation (no vectorial representatio
sed); nevertheless, the interpretation of the derivation c
xtended to the situation ofxbeing a vector of state variable

.1. Deterministic case

Consider the definition of an optimal control problem

axθL =
∫ T

0
k(x, θ) dt

ubject to:

dx

dt
= f (x, θ) = f

nd the dynamic programming optimality conditions gi
y

,

dLx

dt
= −kx − fxLx (6)

inally, if we consider that, for the case of the maxim
rinciple formulation, the problem is represented in lin
ayer form, thenk = 0 and Eqs. (3) and (6) become:

= Lxf (7)

dLx

dt
= −fxLx (8)

ewriting Eqs. (7) and (8) in terms of variables,µ, whereµ

re equivalent to the derivatives of the objective functioL
ith respect to the state variablesx in dynamic programming

esults in following adjoint equations for maximum princip

dµ

dt
= −fxµ (9)

nd, forn-dimensional vectors:

dµi

dt
= −

n∑
j=1

µj

∂fj

∂xi

.2. Stochastic case

Once again, we will use a scalar representation alth
he extension to vectorial analysis can be made. Consid
tochastic optimal control problem given by

axθL = E

[∫ T

0
k(x, θ) dt

]



V. Rico-Ramirez, U.M. Diwekar / Computers and Chemical Engineering 28 (2004) 2845–2849 2847

whereE is the expectation operator.
Subject to an Ito process (Diwekar, 1995):

dx = fdt + gdz (10)

where dz is a stochastic Wiener process, andf andg are both
given functions.

The corresponding optimality conditions are now:

0 = maxθ

[
k + 1

dt
E(dL)

]

and the corresponding HJB equation becomes:

0 = maxθ

[
k + ∂L

∂t
+ ∂L

∂x
f + 1

2
g2 ∂2L

(∂x)2

]

= maxθ

[
k + Lt + Lxf + 1

2
g2Lxx

]
(11)

The Hamiltonian function,H, for the stochastic case is given
below:

H = k + Lxf + 1
2g2Lxx

Note the second-order term coming from the consideration
o . We
t case.
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L
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Finally, if the problem is stated in Mayer linear form,k = 0,
and then:

dLx

dt
= −fxLx − 1

2
(g2)xLxx (15)

Eq. (15) provides the expression for the dynamics of the ad-
joint variables in the stochastic case. By comparing Eqs. (15)–
(8), one can observe the second-order term included in
Eq. (15) as a result of the state variable being a stochastic
variable behaving as an Ito process.

2.2.1. Representing second derivatives contributions
using adjoint equations

The use of Eq. (15) implies that the calculation ofLxx is
also needed. In order to obtain an expression for the dynamics
of Lxx, a derivation similar to the one presented in the previ-
ous subsection must be used. The resulting equation will also
be named as adjoint equation. Let us start by deriving again
Eq. (12) with respect tox:

Lxxt + kxx + Lxxfx + Lxxxf + Lxxfx + Lxfxx

+ 1
2g2Lxxxx + 1

2(g2)xLxxx + 1
2(g2)xLxxx

+ 1
2(g2)xxLxx = 0 (16)

and, therefore,

U tions
i

d

B

S

F er
(

E b-
j

f the state variable being an Ito process (Ito’s Lemma)
hen follow the same procedure as in the deterministic
aking derivative of Eq. (11) with respect tox:

xt + kx + Lxxf + fxLx + 1
2g2Lxxx + 1

2(g2)xLxx = 0

(12)

nd, therefore,

xt + Lxxf + 1
2g2Lxxx = −kx − fxLx − 1

2(g2)xLxx (13)

lso, using chain rule and considering second-order co
utions of the derivatives with respect tox (Ito’s Lemma)
esults in:

Lx = ∂Lx

∂t
dt + ∂Lx

∂x

dx

dt
dt + 1

2

∂2Lx

(∂x)2
dx2

ince, because of Ito’s Lemma,E[d(x2)] = g2 dt, the previ-
us equation reduces to:

dLx

dt
= ∂Lx

∂t
+ ∂Lx

∂x

dx

dt
+ 1

2

∂2Lx

(∂x)2
g2

dLx

dt
= Lxt + Lxxf + 1

2Lxxxg
2 (14)

ubstituting (13) in (14):

dLx

dt
= −kx − fxLx − 1

2
(g2)xLxx
Lxxt + Lxxxf + 1
2g2Lxxxx = −kxx − 2Lxxfx − Lxfxx

− (g2)xLxxx − 1
2(g2)xxLxx (17)

sing chain rule and considering second-order contribu
n the derivatives with respect tox (Ito’s Lemma):

Lxx = ∂Lxx

∂t
dt + ∂Lxx

∂x

dx

dt
dt + 1

2

∂2Lxx

(∂x)2
dx2 (18)

y using Ito‘s Lemma:

dLxx

dt
= ∂Lxx

∂t
+ ∂Lxx

∂x

dx

dt
+ 1

2

∂2Lxx

(∂x)2
g2

dLxx

dt
= Lxxt + Lxxxf + 1

2
Lxxxxg

2 (19)

ubstituting Eq. (17) in Eq. (19):

dLxx

dt
= −kxx − 2Lxxfx − Lxfxx − (g2)xLxxx

− 1

2
(g2)xxLxx

inally, if k = 0 and we neglect contribution of third ord
assumption also consistent with Ito’s Lemma):

dLxx

dt
= −2Lxxfx − Lxfxx − 1

2
(g2)xxLxx (20)

quating adjoint variable,µ, to the first derivatives of the o
ective functionLwith respect to the state variablesxandω as
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the second derivatives of the objective function with respect
to the state variables, Eqs. (15) and (20) can be rewritten as

dµ

dt
= −fxµ − 1

2
(g2)xω (21)

dω

dt
= −2ωfx − µfxx − 1

2
(g2)xxω (22)

2.2.2. A summary for the stochastic case
Summarizing the results for the stochastic case, the Hamil-

tonian function and the adjoint equations to be solved in the
stochastic maximum principle formulation are (k = 0):

H = µf + 1

2
g2ω

dµ

dt
= −fxµ − 1

2
(g2)xω µ(T ) = c

dω

dt
= −2ωfx − µfxx − 1

2
(g2)xxω ω(T ) = 0

Notice that the resulting problem is a two-point boundary
value problem. However, it is possible to circumvent the two
point boundary value problem as explained in Diwekar (1995,
1992).
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Subject to differential equations forx1, x2, andx3. As in Ex-
ample 7.5 in Ref. Diwekar (2003), assume that the vertical
displacement variablex1 is stochastic and follows a Brow-
nian motion (instance of an Ito process). This results in the
following differential equations:

dx1 = utdt + σdz x1(0) = 0.0 (24)

where dz = √
dt andσ = 0.5

dx2

dt
=

√
1 + u2

t x2(0) = 0.0 x2(T ) = λ = 16.0 (25)

dx3

dt
= x1(t) x3(0) = 0.0 (26)

The optimality conditions for this problem are

0 = maxθ

[
k + ∂L

∂t
+ ∂L

∂x
f + 1

2
g2 ∂2L

(∂x)2

]
,

0 = maxut

[
∂L

∂t
+ ut

∂L

∂x1(t)
+

√
1 + u2

t

∂L

∂x2(t)
+ x1(t)

∂L

∂x3(t)

+ σ2

2

∂2L

∂x1(t)2

]

or

max

[
L + L u + L

√
1 + u2 + L x (t)

E

m

T

F

µ

T n
b

u

. The isoperimetric problem

We consider here the historic isoperimetric problem
ueen Dido (Diwekar, 2003). Queen Dido’s (1000 BC) p

em was to find maximum area that can be covered by a
curve) whose length (perimeter) is fixed (λ). Using kinemat
cs this problem can be written as follows:

aximizeut J =
∫ T

0
x1(t) dt area

ubject to

x1 = ut dt x1(0) = 0.0 kinematic constraint

dx2

dt
=

√
1 + u2

t x2(0) = 0.0 x2(T ) = λ = 16.0

perimeter constraint

e define a new state variable in order to obtain the li
ayer form of the objective function:

3(t) =
∫ t

0
x1(t) dt

nd the problem can then be written as

axutL = x3(T ) (23)
ut t x1 t x2 t x3 1

+ Lx1x1σ
2

2

]
= 0

xpressing in terms of the adjoint variables results in

axut

[
Lt + µ1ut + µ2

√
1 + u2

t + µ3x1(t) + ωσ2

2

]
= 0

(27)

he adjoint equations are, therefore:

dµ1

dt
= −1 =⇒ µ1 = −t + c1 (28)

dµ2

dt
= 0 =⇒ µ2 = c2 (29)

dµ3

dt
= 0 µ3(T ) = 1 =⇒ µ3 = 1 (30)

dω

dt
= 0 ω(T ) = 0 =⇒ ω = 0 (31)

inally, maximizing Eq. (27) with respect tout leads to:

1 + ut√
1 + u2

t

µ2 = 0 (32)

herefore, the velocity parameterut follows the path give
y

t = t − c1√
c2 − (t − c1)2

(33)
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Fig. 1. Deterministic and stochastic path of variablex1.

Solution to the deterministic version of the isoperimetric
problem has been reported in Diwekar (2003). By comparing
such solution to Eq. (33), it would seem that the deterministic
solution and the stochastic solution are the same. However,
stochasticity is embedded in the differential equation forx1
given by Eq. (24). This is also obvious when one simulates a
single instant of stochasticity (Fig. 1) by choosing a normal
random process with a mean of zero and varianceσ repre-
sented by the parameterε in the following form of Eq. (34):

dx1 = ut dt + σε
√

dt x1(0) = 0.0 (34)

It can be seen that, although the stochastic solution follows
a circular path, the expected area obtained in the stochastic
case is smaller than the area obtained in the deterministic case
for the same perimeter.

4. Conclusions

This paper presented the stochastic maximum principle
for optimal control under uncertainty. This paper presents
the theoretical basis for the approach and illustrates it using
a simple iso-perimetric example problem. This approach to
stochastic optimal control is advantageous as it avoids the so-

lution to partial differential equations resulting from stochas-
tic dynamic programming. The usefulness of this approach
for batch and bio processing to handle time dependent ther-
modynamic uncertainties inherent in such processes has re-
cently been illustrated in Rico-Ramirez et al. (2003) and in
Ulas and Diwekar (2004). This approach has a great potential
to solve problems in various areas such as ecosystem dynam-
ics (Duggempudi & Diwekar, 2003), financial modeling, and
economics.
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