Integrating product and process design with optimal control: A case study of solvent recycling

Saadet Ulasa, b, Urmila M. Diwekar a, b, *

aCenter for Uncertain Systems: Tools for Optimization and Management, Vishwamitra Research Institute, Westmont, IL 60559, USA
bDepartment of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607, USA

Received 11 February 2005; received in revised form 21 August 2005; accepted 10 October 2005
Available online 6 December 2005

Abstract

This paper proposes the simultaneous integration of environmentally benign solvent selection (product design), solvent recycling (process design) and optimal control for the separation of azeotropic systems using batch distillation. The previous work performed by Kim et al. (2004. Entrainer selection and solvent recycling in complex batch distillation. Chemical Engineering Communications 191(12), 1606–1633) combines the chemical synthesis and process synthesis under uncertainty. For batch distillation, optimal operation is also important due to the unsteady state nature of the process and high operating costs. Optimal control allows us to optimize the column operating policy by selecting a trajectory for the reflux ratio. However, there are time-dependent uncertainties in thermodynamic models of batch distillation due to the assumption of constant relative volatility. In this paper, the uncertainties in relative volatility were modeled using Itô processes and the stochastic optimal control problem was solved by combined maximum principle and non-linear programming (NLP) techniques. Then the previous work of optimal solvent selection and recycling was coupled with optimal control. As a real world example for this integrated approach, a waste stream containing acetonitrile–water was studied. The optimal design parameters obtained by Kim et al. (2004. Entrainer selection and solvent recycling in complex batch distillation. Chemical Engineering Communications 191(12), 1606–1633), for this separation were used and the optimal control policy is computed first without considering uncertainties by variable transformation technique. The deterministic optimal control policy improves the product yield by 4.0% as compared to the base case, verified using a rigorous simulator for batch distillation. When the stochastic optimal control policy was computed representing the relative volatility as an Itô process, a similar recovery rate was obtained from simulations, but the batch time was reduced significantly, producing the most profitable operation.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Batch distillation; Optimal control; Itô process; Middle vessel

1. Introduction

Solvents are widely used in bulk chemical, specialty chemical and pharmaceutical industries. However, waste solvents released from these industries deteriorate the environmental quality and reduce the material economy. In order to recover the solvents from waste streams, separation processes are employed. Batch distillation is one of the separation processes used for solvent recovery in many chemical industries especially those related to the production of high value, low volume specialty chemicals, pharmaceuticals and bio-chemicals. This process offers great flexibility for small-scale production, where there are variations in feed stock and product specifications. On the other hand, the unsteady state nature of this process creates challenging design and operational problems.

One of the most difficult problems is to optimally design and operate batch columns for the separation of systems showing non-ideal mixture behavior. For many industrially important mixtures and some waste solvents, the thermodynamics is complex due to the formation of azeotropes. One way to separate an azeotropic mixture is to use an entrainer to break the azeotrope by changing vapor–liquid equilibrium. The question following this is how to select an effective separating agent or entrainer (chemical synthesis) which complies with environmental regulations and how to synthesize this distillation
process for solvent separation and recycling. In recent years, researchers have realized the importance of integrating chemical synthesis (i.e., environmentally benign solvent (EBS) selection) with process synthesis (i.e., in-process solvent (IPS) recycling) to ensure improved economic performance and environmental quality. Recently, Kim et al. (2004) derived an innovative batch campaign using the integrated chemical synthesis and process synthesis approach. Furthermore, for batch distillation, we should also consider another important factor: optimal operation. Due to its unsteady state nature, operation is much more difficult and the operating costs are higher for this process. Therefore, optimal operating policies should be found for batch distillation. This results in an optimal control problem where an optimal trajectory for the control variable is found so as to optimize an index of performance. An optimal trajectory would be obtained if the mathematical model accurately captures the dynamics of the batch distillation process. However, for many mixtures the thermodynamic model is not exact and this results in time-dependent uncertainties. Rico-Ramirez et al. (2003) and Ulas et al. (2003) modeled these time-dependent uncertainties by making use of Real Options Theory based on Ito’s Lemma (Ito, 1951) and derived the necessary equations for solving stochastic optimal control problems in batch distillation. The usefulness of this approach was demonstrated by case studies with known thermodynamic systems where the optimal reflux profiles obtained resulted in better process yield and product purity.

The aim of this work is to combine the previous work of computer-aided EBS selection and in-process recycling with optimal control in one platform considering the uncertainties at each stage. This complete integrated approach enables us to optimally design and operate batch distillation processes for azeotropic systems under uncertainty.

2. Integrated framework for waste solvent reduction

As mentioned above, the integrated framework consists of three stages:

1. Environmentally benign solvent selection (EBS).
2. In-process solvent recycling (IPS).
3. Optimal control and operation.

2.1. Solvent selection—product design

The first stage of this integrated framework is product design which is an approach to generate candidate solvent molecules that have desirable physical, chemical, and environmental properties. Computer-aided molecular design (CAMD) is one commonly used method. Based on the reverse use of group contribution methods, CAMD can automatically generate promising solvent molecules from their fundamental building blocks or groups (Kim and Diwekar, 2002a). Solvent selection model includes properties such as (a) distribution coefficient, (b) solvent selectivity, (c) physical properties like boiling point, ash point, density, and viscosity, (d) toxicology, (e) environmental properties like LC\textsubscript{50} (lethal concentration at 50% mortality), LD\textsubscript{50} (lethal dose at 50% mortality), BCF (bio-concentration factor), and persistence, and (f) cost. The basic diagram of CAMD is given in Fig. 1. This method can generate a list of candidate solvents with reasonable accuracy within a moderate time scale. However, CAMD is limited by the availability and reliability of property estimation methods and there are uncertainties in the prediction of environmental properties. These uncertainties will be mentioned in Section 3.

2.2. Solvent recycling—process design

At this stage the EBS selection and IPS recycling models are simultaneously integrated. Three competing batch column configurations: the rectifier, the stripper, and the middle vessel column are considered which are given in Fig. 2. Heuristics and optimization are used to find the best possible column configuration. A multi-objective optimization framework with possible objectives: maximum product recovery, maximum column feasibility and minimum heat duty provide the various trade-offs necessary for a smooth and robust operation. Kim et al. (2004) applied this framework to an industrial case study involving acetonitrile (ACN) and water and derived two innovative batch campaigns. In this paper, to further improve waste reduction, optimal operation is also considered as well as product and process design, which is described in the following subsection. The same case study will be used to see the effect of optimal operation on process recovery in Section 4.

2.3. Optimal control—optimal process operation

The final stage of this integrated framework is to apply optimal operation strategies to achieve maximum product yield
and profit in solvent recycling. This is an important issue in batch and bio-processing because of the dynamic nature of these processes and the uncertainties associated with operation. The implementation of optimal operating strategies is important to maximize the amount of solvents recovered and to reduce the operating costs.

Optimal reflux policy in batch distillation is a trade-off between the two operating modes of variable reflux and constant reflux, based on the ability to yield the most profitable operation. The conceptual representation of optimal reflux policy is given in Fig. 3. The computation of this policy relies on optimal control theory. Optimal control problems in batch distillation involve finding an open loop solution for the reflux ratio profile. The trajectory for reflux ratio is followed by the controller to optimize the chosen performance index. This trajectory is optimal when the mathematical model accurately represents the physical phenomena.

For inverted columns (stripers) operating policies are constant reboil, variable reboil and optimal reboil. Lotter and Diwekar (1997) studied emerging batch distillation columns such as the batch stripper and middle vessel columns (shown in Fig. 2) and derived shortcut models for these complex column configurations. Although the constant and variable reboil policies have been studied before, the stripper optimal reboil policy based on optimal control theory was not presented. In a similar fashion to optimal reflux policy of batch rectifier (Diwekar, 1992), the optimal reboil policy can be derived from optimal control theory for the stripper and middle vessel columns.

3. Uncertainties in integrated framework

The uncertainties in batch distillation design and operation can be classified into two groups: static uncertainties and time-dependent uncertainties.

3.1. Static uncertainties

The solvent selection model predicts parameters such as the solvent selectivity, distribution coefficient and solvent loss using UNIFAC (Hansen et al., 1991). The interaction parameters between groups in the UNIFAC equation are obtained from regressions of experimental data and are thus subject to uncertainty due to experimental and regression errors. Furthermore, the activity coefficient at infinite condition is, by definition, extrapolated to an infinite dilution activity coefficient in which large discrepancies are observed.

For example, Fig. 4 shows how the uncertainties in more than 1800 interaction parameters present in the UNIFAC model to predict the solvent selection objectives for the acetic acid–water separations, collapsed in terms of three parameters in a case study by Kim and Diwekar (2002b). In this figure, the uncertainty factor is defined as the ratio of experimental values of γ^∞, which is defined as the activity coefficient at infinite dilution to the γ^∞ values predicted by the UNIFAC model.

Thermodynamics is used to identify three kinds of interactions, organic–water (lognormal distribution), organic–organic (lognormal distribution), water–organic (normal distribution). This division considers the difference between properties of water and those of organic chemicals. In order to deal with this uncertainty, an efficient sampling technique called the Hammersley Sequence Sampling (HSS) (Kalagnanam and Diwekar, 1997) was applied to this model and to solve this stochastic combinatorial optimization problem of solvent selection, Hammersley Stochastic Annealing (HSTA) algorithm was developed. For details of this work please refer to Kim and Diwekar (2002b).
3.2. Time-dependent uncertainties

The thermodynamic uncertainties represented in Fig. 4 are static uncertainties, which in most cases can be represented by probability distributions functions. However, since batch distillation is of unsteady state nature, static uncertainties are translated into time-dependent (dynamic) uncertainties, which affect the optimal operating conditions.

Recently a paper by Rico-Ramirez et al. (2003) presented a new approach to optimal control problems in batch distillation under uncertainty. In this paper, Real Options Theory from finance literature was used to include time-dependent uncertainties in current formulations of batch distillation optimal control. It was proved to be very useful for an ideal system of pentane–hexane (Ulas et al., 2003) as well as non-ideal systems (Ulas and Diwekar, 2004). These time-dependent uncertainties were included in the process models by using a class of stochastic processes called Ito processes. The uncertainties in group contribution methods (UNIFAC) used for the estimation of phase equilibria and their effects on the model parameters were also illustrated in the work by Ulas and Diwekar (2004) using extensive experimental data available in literature.

Two examples of Ito processes are given in Eqs. (1) and (2). The first equation represents geometric Brownian motion, which was used previously for ideal systems and the second equation is for geometric mean reverting process, for non-ideal systems
\[
\frac{dx}{dt} = \sigma x \, dz, \tag{1}
\]
\[
\frac{dx}{dt} = \eta (x - x_t) \, dt + \sigma x \, dz. \tag{2}
\]

In these equations \(dz = \eta_t \sqrt{dt}\), where \(\eta_t\) is a random number drawn from a unit normal distribution. It was shown that the stochastic reflux ratio profile improves the process performance significantly as compared to the reflux ratio profile computed by deterministic approaches. An improvement in product yield of 69% was reported (Ulas and Diwekar, 2004) in a case study involving the non-ideal mixture of ethanol–water. In the case of ideal systems such as pentane–hexane, the product purity was improved by 11% (Ulas et al., 2003). We are using this approach to obtain optimal reboil policy for ACN–water separation. In order to solve this problem, we derived the optimal reboil policy deterministic profile first, followed by variable transformation to accommodate for azeotropes. Stochastic optimal reboil policy is derived in the next section.

4. Case study

4.1. Acetonitrile–water separation—campaign I & II

ACN is a commonly used solvent in pharmaceutical and specialty chemical industries. For example, ACN is consumed to purify peptide drugs in liquid chromatography columns (Mallinckrodt Chemicals, St. Louis, MO), however, at the end of the process a mixture of water and ACN is produced as a waste stream which forms an azeotrope. Kim et al. (2004) studied the separation of this mixture in two campaigns where the solvent selection and solvent recycling steps of this framework were simultaneously integrated.

The two campaigns can be summarized as follows:

Campaign I: Water separation/purification. In this campaign, pure water is separated from the ACN–water mixture for direct disposal of water to sewers. The water is the lower volatile component and the composition of the mixture is such that the ACN mole fraction is low (\(x_{\text{ACN}} = 0.2235\), \(x_{\text{water}} = 0.7765\)).

Campaign II: ACN separation. In this campaign ACN is separated using an entrainer that is designed by CAMD approach as described in Section 2.1 and a batch extractive distillation process is employed to separate ACN. The candidate solvents that were found by Kim et al. (2004) were acetone and propyl amine.

This paper focuses on the first campaign where the pure water is obtained from ACN–water mixture. Since water is the lower volatile component (LVC), general heuristics presented by Kim and Diwekar (2000) suggest that a middle vessel or a stripper can be used for this operation. Considering the remaining performance indices suggests the use of a middle vessel column. A middle vessel with an infinite reflux ratio and a finite reboil ratio is designed to obtain the best performance. The middle vessel column has five theoretical equilibrium stages at the top and bottom sections. At the end of batch stripping operation, the optimal design has the following parameters: \(R_b = 5.1\), \(V_l = V_b = 77.8\, \text{kmol}/\text{h}, t = 4.08\, \text{h}\). We have simulated this operation with MultiBatchDS® (Diwekar, 1996), using a semi-rigorous simulator, with zero holdup and 83.05% recovery was obtained from this operation. This is used as our base case in this study.

This high recovery was obtained for a constant reboil ratio of 5.1. In this paper we suggest the use of an optimal reboil policy to increase the product recovery. Using this method we are coupling the optimal design parameters found by Kim and Diwekar (2000) with the optimal control policy derived for the batch stripper. This integrated approach is expected to increase the performance of the batch operation. First we need to show that the optimal reboil policy indeed results in the most profitable operation by increasing the product yield. The following section presents a derivation of the optimal reboil policy similar to optimal reflux policy reported by Diwekar (1992) where the shortcut method for the batch stripper is used to simplify the problem and to decrease the number of state variables and the optimal control problem is solved using the combined maximum principle and NLP approach.

4.2. Optimal reboil policy—deterministic case

The formulation of the maximum bottom product problem for the deterministic case is given below based on Pontryagin’s maximum principle. The aim is to find the optimal trajectory of the reboil ratio to maximize the yield of the key component, (LVC), for a given purity. In the formulation given below, \(x\) is the bottom product, \(S\) is the amount remaining in still which is also the first state variable \(x_1\), \(x_1(k)\) is the still composition of the key component which is the second state variable \(x_2\),
The adjoint equations are

\[\frac{dz_1}{dt} = z_2 \frac{V_b}{R_b x_1} (x_2 - x_{(k)bot}) \quad z_1(0) = S_0 = F, \]

(7)

\[\frac{dz_2}{dt} = -z_2 \frac{V_b}{R_b x_1} (1 - \frac{\partial x_{(k)bot}}{\partial x_2}) \quad z_2(T) = 0. \]

(8)

Combine \(z_1 \) and \(z_2 \), \(z_T = z_2/z_1 \),

\[\frac{dz_2}{dz_1} = \frac{1}{z_1} \frac{dz_2}{dt} + z_2 \frac{d(1/z_1)}{dt} = \frac{1}{z_1} \frac{dz_2}{dt} + \frac{z_2}{z_1^2} \frac{dz_1}{dt}, \]

(9)

\[\frac{dz_T}{dt} = -z_T \frac{V_b}{R_b x_1} \left(1 - \frac{\partial x_{(k)bot}}{\partial x_2}\right) - (z_T)^2 \frac{V_b}{R_b x_1^2} (x_2 - x_{(k)bot}). \]

(10)

For stripper:

\[R_b = \frac{x_1 - z_T (x_2 - x_{(k)bot})}{z_T (\partial x_{(k)bot}/\partial x_2) - \partial x_{(k)bot}/\partial x_2}. \]

(11)

This solution is obtained by minimizing the Hamiltonian which does not incorporate the purity constraint. Hence the use of final boundary condition \((z_T = 0)\) provides the limiting solution resulting in all the still charge instantaneously going to the bottoms pot \((R_b = -\infty)\) with lowest overall purity. Since the formulation of the purity constraint is imposed external to the Hamiltonian, the final boundary condition \((z_T = 0)\) is no longer valid.

4.3. Application of deterministic optimal reboil policy to ACN–water separation

As mentioned earlier, the optimal design with a constant reboil ratio of 5.1 results in 83.05% recovery for ACN–water separation. In order to see the effects of optimal reboil policy on this process, the formulation for the stripper was slightly changed in order to incorporate the fact that a middle vessel with an infinite reflux ratio was used for this separation. At each time step the distillate composition was found using Hengestebeck–Geddes equation for the top portion of the column

\[x_{(k)D}^{(i)} = \left(\frac{y_i}{x_k}\right) \frac{C_T}{x_k} x_{(k)}^{(i)}. \]

(12)

In this equation \(C_T \) should be equal to \(\frac{N_T}{N} \) (number of theoretical equilibrium stages for the top portion of the column), since we are using infinite reflux ratio. Also the differential material balance equation for the still composition is changed

\[x_{(k)bot}^{(i)} = x_{(k)bot}^{(i)} + \frac{\Delta x_{(k)bot}^{(i)}}{\partial x_{(k)bot}^{(i)}} \frac{d (x_{(k)bot}^{(i)} - x_{(k)bot}^{(i)})}{dt} + \frac{\Delta x_{(k)bot}^{(i)}}{\partial x_{(k)bot}^{(i)}} \frac{d (x_{(k)bot}^{(i)} - x_{(k)bot}^{(i)})}{dt}. \]

(13)

Finally, the Gilliand correlation (Gilliand, 1940) is also different for the middle vessel. The equations for \(X \) and \(Y \) for the bottom portion of the column are given as follows:

\[X = \frac{R_b - R_{b{\text{min}}}}{R_b}, \quad Y = 0.6187 - 0.5655 X. \]

(14)

The rest of the equations are the same with the stripper since the reflux ratio is infinite.

It is known that ACN–water mixture forms an azeotrope. The vapor liquid equilibrium data for a pressure of 760 mmHg (Gmelin and Onken, 1977) suggests that the azeotrope occurs at a composition around in 70%. The vapor liquid equilibrium data is shown in Fig. 5.

The shortcut method for the stripper is based on the assumption of constant relative volatility throughout the column. In case of azeotropic systems, the relative volatility becomes unity at the azeotropic point so this assumption is no longer
valid. In order to deal with this problem, variable transformation approach is used. This approach has been presented by Anderson and Doherty (1984) for continuous columns and Diwekar (1991) applied this method to batch distillation columns. According to this method, the equilibrium curve is split into two parts as shown in Fig. 6. Then the variables are transformed using the azeotropic composition.

The bottom curve represents (shown in Fig. 6(a))

\[
x_1^* = \frac{x_1}{x_1^{az}}, \quad x_2^* = 1 - x_1^*,
\]

(15)

\[
y_1^* = \frac{y_1}{y_1^{az}}, \quad y_2^* = 1 - y_1^*.
\]

(16)

The top curve represents (shown in Fig. 6(a))

\[
x_1^* = \frac{x_1 - x_2^{az}}{1 - x_1^{az}}, \quad x_2^* = 1 - x_1^*,
\]

(17)

\[
y_1^* = \frac{y_1 - y_2^{az}}{1 - y_1^{az}}, \quad y_2^* = 1 - y_1^*.
\]

(18)

The equilibrium relationship for the binary system in terms of the transformed variables is represented by

\[
y_1^* = \frac{x_1 x_1^*}{1 + (x_1 - 1)x_1^*}.
\]

(19)

After variable transformation is applied to ACN–water system with azeotropic composition of the more volatile component being 70%, the relative volatility of the system was found as 17.02. Then this variable transformation was incorporated into the optimal control problem for the middle vessel with infinite reflux ratio. Since water (LVC) is separated using a stripping operation, the key component is 2, thus the top and bottom curves are reversed in Fig. 6(b). The variable transformation is applied choosing the azeotropic composition as 30% and Eqs. (17) and (18) for the top curve. The equations for transforming the still composition, bottoms composition and distillate composition are given as follows:

Variable transformation:

\[
x_1^{az} = 0.30, \quad x_2^{(2)*} = (x_2^{(2)} - x_2^{az})/(1 - x_2^{az}), \quad x_1^{(1)*} = 1 - x_2^{(2)*}.
\]

(20)

After the reflux ratio is found at each time step, the variables are retransformed.

Variable retransformation:

\[
x_2^{(2)} = x_2^{(2)*} - x_2^{az}(x_2^{(2)*} - 1), \quad x_1^{(1)} = 1 - x_2^{(2)},
\]

\[
x_2^{(2)} = x_2^{(2)*} - x_2^{az}(x_2^{(2)*} - 1), \quad x_2^{(1)} = 1 - x_2^{(2)},
\]

\[
x_2^{(2)} = x_2^{(2)*} - x_2^{az}(x_2^{(2)*} - 1), \quad x_2^{(1)} = 1 - x_2^{(2)}.
\]

(21)

For the next time step, the still compositions are calculated using the differential material balance equations. After that, the variables are again transformed. The details of this method can be found in detail for rectifying operation in Diwekar (1991, 1995).

4.4. Time-dependent uncertainties in ACN–water separation

We have shown in the previous section that, optimal reboil policy results in an improvement in product yield for the separation of a low volatile component from an azeotropic binary mixture. For the azeotropic system of ACN–water, an approximate model, namely variable transformation was used to recognize the azeotropic point as an impassable barrier, which the column composition profile cannot reach beyond. The recovery from the middle vessel can be increased even more
when the relative volatility is considered as a time-dependent uncertainty and modeled accordingly.

Previously, for azeotropic systems such as ethanol–water the time-dependent changes in relative volatility were modeled using the geometric mean reverting process, as shown in Eq. (2) (Ulas and Diwekar, 2004), which resulted in significant improvement in product recovery.

Applying the same principle here for the ACN–water, the variation of relative volatility with respect to time and each plate was found using the rigorous model with zero holdup of MultiBatchDS as a proxy for real experiments. The result of the simulation is shown in Fig. 7(a). Two different sets of parameters for two time periods were used to model the changes were found as time period, at the end of regression analysis the parameters were, \(\eta=1.7, \bar{z}=2.0, \sigma=0.15 \). It should be highlighted that \(\bar{z} \) represents the value which \(x \) tends to revert, \(\eta \) is the speed of the reversion and \(\sigma \) is the standard deviation.

4.5. Optimal reboil policy—stochastic case

Since we have modeled the time-dependent uncertainties with the geometric mean reverting process, we can revisit the maximum bottom product problem. The uncertainties in relative volatility affect one of the state variables, the still composition. This can be derived from Hengestebeck–Geddes equation similar to the rectifier case. Therefore, the still composition can also be represented by an Ito process. The maximum bottom product problem becomes

Maximize \(-x_1(T)\) \hspace{1cm} (22)

subject to \(\frac{dx_1}{dt} = -V_b \frac{R_{blU}}{R_{blU}x_1} + \frac{V_b}{R_{blU}x_1} (x_2-x_{\text{bot}}^{(k)}), \quad x_1(0) = S_0 = F, \) \hspace{1cm} (23)

\(\frac{dx_2}{dt} = -V_b \frac{R_{blU}}{R_{blU}x_1} (x_2-x_{\text{bot}}^{(k)}) \) \hspace{1cm} (24)

and the batch stripper column model (Table 1).

\[
\text{Hamiltonian:} \\
H_t = -\frac{V_b}{R_{blU}} \frac{\partial L}{\partial x_1} + \frac{V_b}{R_{blU}x_1} (x_2-x_{\text{bot}}^{(k)}) \frac{\partial L}{\partial x_2} + \frac{\sigma_2^2}{2} (x_2)^2 \frac{\partial^2 L}{(\partial x_2)^2}. \hspace{1cm} (25)
\]

The adjoint equations are

\[
\frac{dz_1}{dt} = z_2 \frac{V_b}{R_{blU}x_1^2} (x_2-x_{\text{bot}}^{(k)}), \hspace{1cm} (26)
\]

\[
\frac{dz_2}{dt} = -z_2 \frac{V_b}{R_{blU}x_1} (1-\frac{\partial x_{\text{bot}}^{(k)}}{\partial x_2}) - \frac{\sigma_2^2}{2} x_2 \frac{\partial^2 L}{(\partial x_2)^2}, \hspace{1cm} (27)
\]

\[
\frac{\partial L}{\partial x_1} = z_1, \quad \frac{\partial L}{\partial x_2} = z_2, \quad \frac{\partial^2 L}{(\partial x_2)^2} = \omega_t, \hspace{1cm} (28)
\]

\[
\frac{d\omega_t}{dt} = \frac{d}{dt} \left(\frac{\partial^2 L}{(\partial x_2)^2} \right), \hspace{1cm} (29)
\]

\[
\frac{d\omega_t}{dt} = -\omega_t \frac{V_b}{R_{blU}x_1} (1-\frac{\partial x_{\text{bot}}^{(k)}}{\partial x_2}) + z_2 \frac{V_b}{R_{blU}x_1} \frac{\partial^2 x_{\text{bot}}^{(k)}}{\partial x_2^2} \left(\frac{\partial^2 L}{\partial x_2^2} \right), \hspace{1cm} (30)
\]

\[
R_{blU} = \frac{(-\partial L/\partial x_2)((x_2-x_{\text{bot}}^{(k)})/x_1) + (\partial L/\partial x_1)}{(\partial x_{\text{bot}}^{(k)}/\partial R_{blU})(1/x_1)(\partial L/\partial x_2)} + \frac{\sigma_2^2}{(\partial x_{\text{bot}}^{(k)}/\partial R_{blU})(1/x_1)(\partial L/\partial x_2)} \frac{R_{blU}^2}{V}. \hspace{1cm} (31)
\]

Define

\[
\dot{z} = \frac{\partial^2 L/\partial x_2^2}{\partial L/\partial x_1} = \frac{\omega_t}{z_1} \quad \text{and} \quad z = \frac{z_2}{z_1} = \frac{\partial L/\partial x_2}{\partial L/\partial x_1}, \hspace{1cm} (32)
\]

\[
\frac{dz}{dt} = -z^2 \frac{V_b}{R_{blU}x_1^2} (x_2-x_{\text{bot}}^{(k)}), \hspace{1cm} (33)
\]

\[
-\frac{V_b}{R_{blU}x_1} (1-\frac{\partial x_{\text{bot}}^{(k)}}{\partial x_2}) - \dot{z} \frac{\partial^2 L}{\partial x_2^2}, \quad z_2(T) = 0. \hspace{1cm} (34)
\]
The final solution is

$$\frac{d \xi}{dt} = -\xi \frac{V_b}{R_{bU} x_1} \left(1 - \frac{\partial x_{\text{bot}}^{(k)}}{\partial x_2}
ight) + \frac{z}{R_{bU} x_1 (\partial x_2) \xi} \frac{V_b}{x_1} \frac{\partial^2 x_{\text{bot}}^{(k)}}{\partial x_2} (x_2 - x_{\text{bot}}^{(k)}),$$

$$\xi(T) = 0.$$

(34)

The effects of stochastic optimal reboil policy on ACN–water separation is studied in the following subsection.

5. Results

The stochastic optimal reboil policy is computed using the combined maximum principle and non-linear programming technique. The comparisons of this policy with the deterministic optimal reboil with variable transformation and constant reboil policies are shown in Fig. 8. It can be seen from the figure that the deterministic and stochastic reboil policies are similar.

For the constant reboil and deterministic optimal reboil policies the optimal design variables found by Kim and Diwekar (2000) are used. These variables are $V_f = V_b = 77.8$, batch time $= 4.08$, 94.5 k-moles of feed with a composition of $x_{\text{ACN}} = 0.2235$, $x_{\text{water}} = 0.7765$, five theoretical equilibrium stages at the top and bottom and an infinite reflux ratio. As mentioned earlier 83.05% recovery was achieved with optimal design using constant reboil policy of 5.1.

![Fig. 8. Comparisons of stochastic optimal, deterministic optimal and constant reboil policies.](image)

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Constant reboil</th>
<th>Optimal reboil</th>
<th>Stochastic optimal reboil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottoms product (bot)</td>
<td>62.30</td>
<td>65.14</td>
<td>65.3</td>
</tr>
<tr>
<td>Bottoms purity ($x_s^{(2)}$)</td>
<td>97.8%</td>
<td>98.1%</td>
<td>97.0%</td>
</tr>
<tr>
<td>Recovery</td>
<td>83.05%</td>
<td>86.9%</td>
<td>86.32%</td>
</tr>
<tr>
<td>Batch time</td>
<td>4.0858</td>
<td>4.0858</td>
<td>2.0</td>
</tr>
</tbody>
</table>

For the computation of the deterministic optimal reboil policy, the equations in Sec. 4.2 and 4.3 are used, which are coupled with the optimal design configuration. In this case the product recovery rate increases about 4% compared to the constant reboil policy. Furthermore, the consideration of uncertainties in the stochastic optimal reboil policy results in even better performance as can be seen from the results in Table 2.

For the stochastic optimal reboil policy, the objective was to maximize the amount of product recovery (bottoms) for a fixed time period and average product concentration. However, in this case, we also tried to minimize the time by trying different time periods to obtain the same average product concentration. It should also be mentioned that there are three performance indices used as objective functions in literature for the optimal control of batch distillation columns: maximum distillate (bottoms), maximum profit and minimum time and it has been shown by Diwekar (1992) that all the indices for the optimal control of batch distillation columns can be expressed in terms of the maximum distillate (bottoms) problem. In ACN–water separation, the stochastic optimal reboil policy has resulted in 50% reduction in time for the same recovery rate compared to the deterministic case.

In order to compare these three operating policies (constant reboil, deterministic optimal reboil and stochastic optimal reboil), the results from the shortcut model were given to a rigorous simulator with zero holdup for verification. The rigorous simulator was used as a proxy for real experiments to test the three reboil ratio profiles. The results shown in Table 2 are from this simulation.

Therefore, these results show that, the stochastic optimal reboil policy coupled with optimal design configuration ensures an optimal process performance for a batch stripping operation.

6. Conclusion

An integrated framework has been developed that involves solvent selection, solvent recycling and optimal operation under uncertainty for batch processing industries. This framework was applied to a solvent recycling problem in peptide drug production. For binary azeotropic systems, this framework selects candidate solvents based on computer-aided molecular design. Then the optimal batch column configuration is selected based on the parameters for separation and heuristics. Finally, the optimal operation policy is found for the best column configuration. It was shown that similar to the optimal reflux policy...
for the rectifier, the optimal reboil policy improves the product yield significantly for the stripper and middle vessel column configurations and results in the most profitable operation.

Uncertainties were considered in two categories in this framework: static uncertainties and time-dependent uncertainties. The static uncertainties constitute the uncertainties in UNIFAC which have a significant effect on the CAMD model. An efficient sampling technique, the HSS sampling was used to deal with static uncertainties. Since batch distillation is a dynamic process, the static uncertainties are translated into dynamic uncertainties, which in turn affect the optimal operating profiles. These dynamic uncertainties were modeled using Ito processes in this paper.

A middle vessel column with an infinite reflux ratio and a finite reboil ratio was chosen for the process involving the separation of acetonitrile and water. The optimal design parameters were coupled with an optimal control policy to obtain the most profitable operation. Two methods were used to compute the optimal reboil policy. The first method was the variable transformation technique where the azeotropic point was recognized as an impassable barrier and the optimal control policy was derived accordingly. The second method was the stochastic method, where the relative volatility was represented by an Ito process, which affected one of the state variables. The stochastic optimal control policy was derived and computed using the combined maximum principle and NLP technique. Then the stochastic and deterministic optimal reboil policies were compared to the constant reboil policy from an optimal design configuration. The optimal operation was obtained from the stochastic reboil policy, with a higher product yield and reduced batch time.

This integrated stochastic framework promises to be very useful for waste reduction in pharmaceutical and specialty chemical industries, to achieve the most efficient, environmentally friendly and profitable separation process both at the stages of design and operation.

Acknowledgements

This financial support from NSF Grant #CTS-0353088 is gratefully acknowledged.

References